Project

General

Profile

OsmoTRX » History » Version 54

neels, 12/05/2016 12:15 PM

1 41 ttsou
{{>toc}}
2 1 ttsou
3 41 ttsou
h1. [[OsmoTRX]]
4 1 ttsou
5
6 41 ttsou
[[OsmoTRX]] is a software-defined radio transceiver that implements the Layer 1 physical layer of a BTS comprising the following 3GPP specifications:
7
* TS 05.01 "Physical layer on the radio path"
8
* TS 05.02 "Multiplexing and Multiple Access on the Radio Path"
9
* TS 05.04 "Modulation"
10
* TS 05.10 "Radio subsystem synchronization"
11 1 ttsou
12 49 neels
[[OsmoTRX]] is based on the transceiver code from the [[OsmoBTS:OpenBTS]] project, but setup to operate independently with the purpose of using with non-OpenBTS software and projects, while still maintaining backwards compatibility with [[OsmoBTS:OpenBTS]]. Currently there are numerous features contained in [[OsmoTRX:]] that extend the functionality of the [[OsmoBTS:OpenBTS]] transceiver. These features include enhanced support for various embedded platforms - notably ARM - and dual channel diversity support for the Fairwaves [[umtrx:]].
13 41 ttsou
14 46 laforge
h2. OsmoTRX in the Osmocom GSM architecture
15
16
{{graphviz_link()
17
digraph G {
18
    rankdir = LR;
19
    SDR -> OsmoTRX [label="Raw Samples"];
20
    OsmoTRX -> OsmoBTS [label="bursts over UDP"];
21
    OsmoBTS -> OsmoNITB [label="Abis/IP"];
22
    OsmoBTS -> OsmoPCU [label="pcu_sock"];
23
    OsmoPCU -> OsmoSGSN [label="Gb/IP"];
24
    OsmoTRX [color=red];
25
}
26
}}
27 41 ttsou
28
h2. Features
29
30
31
*Intel SSE Support*
32 6 ttsou
* SSE3
33
* SSE4.1
34 20 ttsou
35 41 ttsou
On Intel processors, [[OsmoTRX]] makes heavy use of the Streaming SIMD Extensions (SSE) instruction set. Accelerated operations include pulse shape filtering, resampling, sequence correlation, and many other signal processing operations. SSE3 is the minimum requirement for accelerated use.
36 1 ttsou
37 20 ttsou
SSE3 is present in the majority of Intel processors since later versions of the Pentium 4 architecture and is also present on low power Atom processors. Support is automatically detected at build time. For additional performance information, please see the performance and benchmarks section.
38 29 ttsou
39 41 ttsou
*ARM Support*
40 1 ttsou
* NEON
41
* NEON-VFPv4
42 20 ttsou
43 41 ttsou
[[OsmoTRX]] runs on a variety of ARM processors with and without NEON coprocessors. Like SSE on Intel processors, NEON provides acceleration with SIMD vectorized instructions.
44 20 ttsou
45 1 ttsou
Tested popular architectures include ARM11 (Raspberry Pi), Cortex-A8 (!BeagleBoard), and Cortex-A15 (!ArndaleBoard). Loosely speaking, these platforms are representative of low cost embedded devices, mid-level handsets, and high-end smartphones respectively. Similarly, in order, these platforms include no NEON coprocessor, standard NEON, and NEON-VFPv4. The latter NEON variation, VFPv4, provides additional fused-multiply-accumulate (FMA) instructions useful for many DSP operations.
46
47 26 ttsou
NEON support must be enabled by the user at build time. For additional information, please see the configuration and performance and benchmarks sections.
48 37 ttsou
49 41 ttsou
*Dual Channel (UmTRX and B210)*
50 7 ttsou
51 1 ttsou
Two dual channel modes are available: standard dual channel mode and diversity. In standard dual channel mode, each RF
52 28 ttsou
path of the dual channel device supports a different ARFCN. Each path operates independently a
53 1 ttsou
nd operates similarly to two separate devices. GSM channel capacity in this mode is doubled. This option can be configured at run time from the command line.
54
55 41 ttsou
*Dual Channel Diversity (UmTRX, experimental)*
56 1 ttsou
57 28 ttsou
Diversity mode is similar to the standard dual channel mode except each antenna supports both ARFCN channels. In this case, the receiver sample bandwidth is widened to handle both ARFCN's and subsequently converted and demultiplexed into separate sample streams. Each GSM receive path is fed dual signals, where antenna selection diversity is performed by taking the stronger signal on a burst-by-burst basis. This diversity setup improves uplink reception performance in multipath fading environments.
58 16 ttsou
59 28 ttsou
Limitations are increased CPU utilization and that ARFCN spacing is restricted (currently at 400 kHz) by the receiver sampling bandwidth. Setting the ARFCN spacing beyond the sampling limit will disable the diversity path and operate in standard dual channel mode. This options can be configured at run time from the command line.
60 20 ttsou
61 41 ttsou
*Uplink Burst Detection*
62 39 ttsou
63 49 neels
[[OsmoTRX]] utilizes an updated receive burst detection algorithm that provides greater sensitivity and reliability than the original [[OsmoBTS:OpenBTS]] approach, which relied on energy detection for the initial stage of burst acquisition.
64 39 ttsou
65 1 ttsou
The limitation of the previous approach was that it was slow to adapt to highly transient power levels and false burst detection in challenging situations such as receiver saturation, which may occur in close range lab testing. The other issue was that a high degree of level tuning was often necessary to operate reliably.
66
67
The current receiver code addressed those limitations for improved performance in a wider variety of environments.
68
69 41 ttsou
*Low Phase Error Modulator*
70 16 ttsou
71
The default GSM downlink signal is configured for low distortion using a linearized GMSK modulator. The implementation is based on a two pulse Laurent approximation of continuous phase modulated (CPM) signals. The baseband output signal measures with very low phase error and is capable of passing industry spectrum mask requirements. Please note that actual performance will depend strongly on the particular device in use.
72 1 ttsou
73 41 ttsou
Theoretical details can be found in the report on "GMSK":http://tsou.cc/gsm/report_gmsk.pdf. Octave / Matlab code for "pulse generation":http://tsou.cc/gsm/laurent.m is also available.
74 1 ttsou
75
This option can be enabled or disabled at run time from the command line.
76 28 ttsou
77
Very Low Phase Error (Ettus Research N200)
78 16 ttsou
79 42 laforge
!http://tsou.cc/gsm/osmo-trx-phase75.gif!
80 1 ttsou
81 21 ttsou
Spectrum Mask (Ettus Research N200)
82 1 ttsou
83 42 laforge
!http://tsou.cc/gsm/osmo-trx-spectrum75.gif!
84 1 ttsou
85 41 ttsou
h2. RF Hardware support
86 1 ttsou
87
88 50 neels
Multiple RF devices are currently supported. These include USRP family products from Ettus Research, and the [[UmTRX:]] from Fairwaves.
89 41 ttsou
90
||*Fairwaves*||*Notes*||
91 20 ttsou
||UmTRX||Dual channel||
92
93
All Ettus Research devices are supported.
94 1 ttsou
95 41 ttsou
||*Ettus Research*||*Notes*||
96 1 ttsou
||USRP1||Requires legacy libusrp driver and clocking modification||
97
||USRP2||10 MHz external reference required||
98
||B100||
99
||B110||
100
||B200||GPSDO or 10 MHz external reference recommended||
101
||B210||Dual channel, 10 MHz external reference recommended||
102
||N200||
103 20 ttsou
||N210||
104 1 ttsou
||E100||
105
||E110||
106
107 41 ttsou
h2. Embedded Platform Support
108 1 ttsou
109 41 ttsou
110
[[OsmoTRX]] has been tested on the multiple embedded platforms representing a wide range of device types. Low cost ARM devices are generally limited by memory and I/O as much CPU utilization.
111
112 1 ttsou
Running a full or near full ARFCN configuration (7 simultaneous TCH channels with Combination V) may require running the GSM stack remotely, which can be configured at runtime on the command line. This limitation appears to be scheduling related more so than lack of CPU resources, and may be resolved at a later time.
113
114 43 laforge
|_.Platform|_.SoC*|_.Processor|_.SIMD/FPU|_.Testing Notes|
115
|ArndaleBoard|Samsung Exynos 5250|ARM Cortex-A15|NEON-VFPv4|7 TCH|
116
|BeagleBoard-xM|Texas Instruments OMAP3|ARM Cortex-A8|NEON|7 TCH, remote [[osmobts:]] stack|
117
|Ettus E100|Texas Instruments OMAP3|ARM Cortex-A8|NEON|7 TCH, remote [[osmobts:]] stack|
118
|Raspberry Pi|Broadcom BCM2835|ARM11|VFP|2 TCH, remote [[osmobts:]] stack|
119
|Shuttle PC|NA|Intel Atom D2550|SSE3|Dual channel, 15 TCH|
120 1 ttsou
121
All embedded plaforms were tested with low-phase error modulator disabled. Use of the more accurate modulator on embedded platforms has not been extensively tested.
122 19 ttsou
123 41 ttsou
h2. Mailing List
124 22 ttsou
125 41 ttsou
126 49 neels
For development purposes, [[OsmoTRX:]] is discussed on both [[OsmoBTS:OpenBTS]] and [[OpenBSC:]] mailing lists at openbts-discuss@lists.sourceforge.net and openbsc@lists.osmocom.org respectively.
127 41 ttsou
128 1 ttsou
Please direct questions and bug reports to the list appropriate for the GSM stack being used.
129 41 ttsou
130 47 laforge
Subscription information is available at "and [http://lists.osmocom.org/mailman/listinfo/openbsc/":https://lists.sourceforge.net/lists/listinfo/openbts-discuss].  Please make sure to read our [[cellular-infrastructure:MailingListRules]] before posting.
131 1 ttsou
132 41 ttsou
h2. GPRS support
133 1 ttsou
134
135 44 laforge
[[OsmoTRX]] supports GPRS through [[osmobts:]].
136 1 ttsou
137 49 neels
For GPRS support with [[OsmoBTS:OpenBTS]], please use the transceiver supplied with [[OsmoBTS:OpenBTS]].
138 41 ttsou
139
140
h2. Source code
141
142
143 1 ttsou
The source code is available from git.osmocom.org (module osmo-trx).
144 18 ttsou
145
Public read-only access is available via
146 41 ttsou
<pre>
147 19 ttsou
$ git clone git://git.osmocom.org/osmo-trx
148 41 ttsou
</pre>
149 1 ttsou
You can browse it via cgit: http://cgit.osmocom.org/cgit/osmo-trx/
150
151 48 neels
h2. Dependencies
152 1 ttsou
153 48 neels
Install libusb-1.0 and libbost dev packages. On debian 8.4:
154 1 ttsou
155 48 neels
<pre>
156
sudo apt-get install --no-install-recommends libusb-1.0-0-dev libboost-dev
157
</pre>
158 41 ttsou
159 53 neels
h3. UHD
160 1 ttsou
161 48 neels
Unless using USRP1, you will need the Universal Hardware Driver (UHD),
162
which is available from Ettus Research or Fairwaves; the UHD implementation
163
must match your hardware:
164
165
* Ettus Research UHD for USRP devices
166 51 neels
* Fairwaves UHD with [[UmTRX:]]
167 48 neels
* USRP1 does not use the UHD driver, it is supported through the legacy libusrp driver provided in GNU Radio 3.4.2.
168
169 53 neels
h3. Debian
170 48 neels
171 52 neels
When you are reading this, Debian packages for UHD may be sufficient for running osmo-trx and osmo-bts-trx.
172 48 neels
here are some of the packages that need to be installed:
173
174
<pre>
175 54 neels
sudo apt-get install libuhd-dev uhd-host
176 48 neels
</pre>
177 1 ttsou
178 52 neels
At the time of writing this (2016-12), for Debian 8 aka jessie you need to use the jessie-backports packages:
179
180
<pre>
181
sudo -s
182
echo "deb http://ftp.de.debian.org/debian jessie-backports main" > /etc/apt/sources.list.d/uhd.list
183
apt-get update
184
apt-get -t jessie-backports install libuhd-dev uhd-host
185
</pre>
186
187
It may also be possible to use the pothos PPA instead:
188 48 neels
189
<pre>
190
sudo add-apt-repository ppa:guruofquality/pothos
191
sudo apt-get update
192
sudo apt install libboost-dev uhd
193
</pre>
194
195 53 neels
h3. Firmware
196 48 neels
197
You also need to download the firmware using a script provided by the UHD package.
198
Instructions suggest running the script as root, but this way is less dangerous:
199
200
<pre>
201
sudo mkdir /usr/share/uhd
202
sudo chown $USER: /usr/share/uhd
203
/usr/lib/uhd/utils/uhd_images_downloader.py
204
</pre>
205
206 53 neels
h3. Group
207 48 neels
208
You may need to add yourself to the usrp group:
209
210
<pre>
211
sudo gpasswd -a $USER usrp
212
# and re-login to acquire the group
213
</pre>
214
215 53 neels
h3. Verify
216 48 neels
217
run uhd_find_devices to make sure b200 is available:
218
219
<pre>
220
$ uhd_find_devices 
221
linux; GNU C++ version 4.9.1; Boost_105500; UHD_003.007.003-0-unknown
222
223
--------------------------------------------------
224
-- UHD Device 0
225
--------------------------------------------------
226
Device Address:
227
    type: b200
228
    name: MyB210
229
    serial: 1C0FFEE
230
    product: B210
231
</pre>
232
233
h2. Configuration and Build
234
235 41 ttsou
First, run autoreconf to remake the build system files.
236 1 ttsou
<pre>
237 18 ttsou
$ autoreconf -i
238 41 ttsou
...
239 18 ttsou
</pre>
240 41 ttsou
241 18 ttsou
*Intel Platforms (All)*
242 1 ttsou
243 41 ttsou
Intel SSE support is automatically detected on Intel x86 platforms. No user intervention is necessary. The general configuration defaults to the low phase error modulator. Atom users may wish to use the low-CPU utilization modulator, which can be later enabled from the command line at runtime.
244 18 ttsou
<pre>
245 1 ttsou
$ ./configure
246
...
247 19 ttsou
checking whether mmx is supported... yes
248 18 ttsou
checking whether sse is supported... yes
249
checking whether sse2 is supported... yes
250
checking whether sse3 is supported... yes
251
checking whether ssse3 is supported... yes
252
checking whether sse4.1 is supported... yes
253
checking whether sse4.2 is supported... yes
254 41 ttsou
...
255 18 ttsou
</pre>
256 41 ttsou
257 18 ttsou
*ARM Platforms with NEON*
258 41 ttsou
259
Many popular ARM development boards fall under this category including BeagleBoard, PandaBoard, and Ettus E100 USRP. This option will disable the low phase error modulator, which can be re-enabled at runtime. NEON support must be manually enabled.
260 24 ttsou
<pre>
261 41 ttsou
$ ./configure --with-neon
262 1 ttsou
</pre>
263 41 ttsou
264 1 ttsou
*ARM Platforms with NEON-VFPv4*
265 41 ttsou
266
Currently very few development platforms support this instruction set, which is seen mainly in high end smartphones and tablets. Available development boards are ArndaleBoard and ODROID-XU. This option will disable the low phase error modulator, which can be re-enabled at runtime. NEON-VFPv4 support must be manually enabled.
267 1 ttsou
<pre>
268 41 ttsou
$ ./configure --with-neon-vfpv4
269 1 ttsou
</pre>
270 41 ttsou
271 1 ttsou
*ARM Platforms without NEON*
272 41 ttsou
273 1 ttsou
This configuration mainly targets the Raspberry Pi. ARM platforms without NEON vector units are almost always very slow processors, and generally not very suitable for running [[OsmoTRX]]. Running [[OsmoTRX]] on a Raspberry Pi, however, is possible along with limited TCH (voice) channel support. Currently this configuration requires minor code changes.
274
275
Coming soon...
276 41 ttsou
277 1 ttsou
*Build and Install*
278 16 ttsou
279
After configuration, installation is simple.
280 41 ttsou
281 16 ttsou
<pre>
282
$ make
283 41 ttsou
$ sudo make install
284 16 ttsou
</pre>
285
286 41 ttsou
h2. Running
287 16 ttsou
288 41 ttsou
289
[[OsmoTRX]] can be configured with a variety of options on the command line. In most cases, the default settings will suffice. Notable options include UHD device argument passing, which is often useful for using network based devices with firewalls, and external 10 MHz reference support.
290
291
<pre>
292 16 ttsou
$ osmo-trx -h
293
linux; GNU C++ version 4.8.1 20130603 (Red Hat 4.8.1-1); Boost_105300; UHD_003.005.004-140-gfb32ed16
294
295
Options:
296
  -h    This text
297 1 ttsou
  -a    UHD device args
298 16 ttsou
  -l    Logging level (EMERG, ALERT, CRT, ERR, WARNING, NOTICE, INFO, DEBUG)
299
  -i    IP address of GSM core
300 1 ttsou
  -p    Base port number
301
  -d    Enable dual channel diversity receiver
302 16 ttsou
  -x    Enable external 10 MHz reference
303
  -s    Samples-per-symbol (1 or 4)
304 38 ttsou
  -c    Number of ARFCN channels (default=1)
305
  -f    Enable C0 filler table
306 16 ttsou
  -o    Set baseband frequency offset (default=auto)
307 41 ttsou
</pre>
308 16 ttsou
309 41 ttsou
<pre>
310 1 ttsou
$ osmo-trx -a "addr=192.168.10.2"
311 16 ttsou
linux; GNU C++ version 4.8.1 20130603 (Red Hat 4.8.1-1); Boost_105300; UHD_003.004.000-b14cde5
312
313
Config Settings
314
   Log Level............... INFO
315 1 ttsou
   Device args............. addr=192.168.10.2
316 16 ttsou
   TRX Base Port........... 5700
317 1 ttsou
   TRX Address............. 127.0.0.1
318 16 ttsou
   Channels................ 1
319
   Samples-per-Symbol...... 4
320
   External Reference...... Disabled
321
   Diversity............... Disabled
322
323 41 ttsou
-- Opening a [[UmTRX]] device...
324 13 ttsou
-- Current recv frame size: 1472 bytes
325 38 ttsou
-- Current send frame size: 1472 bytes
326 41 ttsou
-- Setting [[UmTRX]] 4 SPS
327 38 ttsou
-- Transceiver active with 1 channel(s)
328 41 ttsou
</pre>
329 38 ttsou
330 1 ttsou
331 49 neels
h2. [[OsmoTRX]] with [[OsmoBTS:OpenBTS]]
332 38 ttsou
333
334 49 neels
[[OsmoTRX]] is fully compatible with [[OsmoBTS:OpenBTS]] for voice and SMS services. Due to differences in handing of GPRS, [[OsmoTRX]] does not support GPRS when used with [[OsmoBTS:OpenBTS]], however, GPRS with the Osmocom stack is supported.
335 41 ttsou
336 49 neels
For use with [[OsmoBTS:OpenBTS]], enable the filler table option "Enable C0 filler table", which enables [[OsmoBTS:OpenBTS]] style idle bursts and retransmissions.
337 41 ttsou
338
<pre>
339 1 ttsou
$ osmo-trx -f
340 41 ttsou
</pre>
341 17 ttsou
342 49 neels
The [[OsmoTRX]] transceiver should be started before running [[OsmoBTS:OpenBTS]]. No symbolic link to './transceiver' should exist in the [[OsmoBTS:OpenBTS]] directory. This prevents [[OsmoBTS:OpenBTS]] from starting its own transceiver instance.
343 35 ttsou
344 1 ttsou
345 41 ttsou
h2. Benchmarks
346 1 ttsou
347 35 ttsou
348 49 neels
A variety of performance benchmarks are available for various code optimizations. These include floating point - integer conversions, convolution, and convolutional decoding. Note that convolutional decoding does not take place in [[OsmoTRX]], but one stop higher in the Layer 1 stack - either in [[osmobts:]] or [[OsmoBTS:OpenBTS]] core.
349 35 ttsou
350 41 ttsou
*Repository*
351
352
Currently the trx-bench repository holds the test files and contains the same NEON and SSE code as [[OsmoTRX]]. The test code may be merged into [[OsmoTRX]] at a later time, but, for now, it exists as a separate repository. NEON configure options are the same as [[OsmoTRX]].
353
354
<pre>
355 35 ttsou
$ git clone https://github.com/ttsou/trx-bench.git
356
357
$ cd trx-bench
358
$ autoreconf -i
359
$ ./configure [--with-neon] [--with-neon-vfp4]
360 1 ttsou
$ make
361
$ src/conv_test
362 35 ttsou
$ src/convert_test
363
$ src/convolve_test
364 41 ttsou
</pre>
365 35 ttsou
366
The convolutional decoding test includes command options including experimental support for benchmarking with multiple threads.
367
368 41 ttsou
<pre>
369 35 ttsou
$ ./conv_test -h
370
Options:
371
  -h    This text
372 1 ttsou
  -i    Number of iterations
373
  -j    Number of threads for benchmark (1 to 32)
374 13 ttsou
  -b    Run benchmark tests
375
  -a    Run validity checks
376
  -e    Run bit-error-rate tests
377 41 ttsou
</pre>
378 10 ttsou
379 1 ttsou
Selected benchmark results are provided below. All tests are run on a single core only.
380
381 41 ttsou
*Intel Haswell (i7 4770K 3.5 GHz)*
382 1 ttsou
383 41 ttsou
<pre>
384 1 ttsou
--- Floating point to integer conversions
385
-- Testing 40000 iterations of 3120 values
386
- Measuring conversion time
387
- Elapsed time base...                  0.065508 secs
388
- Validating SIMD conversion results... PASS
389 3 ttsou
- Measuring conversion time
390
- Elapsed time SIMD ...                 0.011424 secs
391
- Speedup...                            5.734244
392 41 ttsou
</pre>
393 1 ttsou
394 41 ttsou
<pre>
395 3 ttsou
[+] Testing: GSM TCH/AFS 7.95 (recursive, flushed, punctured)
396
[.] Input length  : ret = 165  exp = 165 -> OK
397
[.] Output length : ret = 448  exp = 448 -> OK
398
[.] Pre computed vector checks:
399
[..] Encoding: OK
400
[..] Decoding base: 
401
[..] Decoding SIMD: 
402 1 ttsou
[..] Code N 3
403
[..] Code K 7
404
OK
405
[.] Random vector checks:
406
[.] Testing baseline:
407 17 ttsou
[..] Encoding / Decoding 10000 cycles:
408
[.] Elapsed time........................ 1.435066 secs
409
[.] Rate................................ 3.121808 Mbps
410
[.] Testing SIMD:
411
[..] Encoding / Decoding 10000 cycles:
412
[.] Elapsed time........................ 0.073524 secs
413
[.] Rate................................ 60.932485 Mbps
414
[.] Speedup............................. 19.518334
415 41 ttsou
</pre>
416 17 ttsou
417 41 ttsou
*Intel Atom (D2500 1.86 GHz)*
418
<pre>
419 17 ttsou
--- Floating point to integer conversions
420
-- Testing 40000 iterations of 3120 values
421
- Measuring conversion time
422
- Elapsed time base...                 1.147449 secs
423 1 ttsou
- Validating SSE conversion results... PASS
424 17 ttsou
- Measuring conversion time
425 1 ttsou
- Elapsed time SSE ...                 0.347838 secs
426
- Quotient...                          3.298803
427 41 ttsou
</pre>
428 17 ttsou
429 41 ttsou
<pre>
430 1 ttsou
[+] Testing: GSM TCH/AFS 7.95 (recursive, flushed, punctured)
431
[.] Input length  : ret = 165  exp = 165 -> OK
432
[.] Output length : ret = 448  exp = 448 -> OK
433
[.] Pre computed vector checks:
434 17 ttsou
[..] Encoding: OK
435
[..] Decoding base: 
436
[..] Decoding SIMD: 
437
[..] Code N 3
438
[..] Code K 7
439
OK
440
[.] Random vector checks:
441 19 ttsou
[.] Testing baseline:
442
[..] Encoding / Decoding 10000 cycles:
443
[.] Elapsed time........................ 11.822688 secs
444 17 ttsou
[.] Rate................................ 0.378932 Mbps
445
[.] Testing SIMD:
446
[..] Encoding / Decoding 10000 cycles:
447
[.] Elapsed time........................ 0.550423 secs
448
[.] Rate................................ 8.139195 Mbps
449
[.] Speedup............................. 21.479277
450 41 ttsou
</pre>
451 17 ttsou
452 41 ttsou
*!ArndaleBoard (ARM Cortex-A15 1.7 GHz)*
453 17 ttsou
454
Please note that the Viterbi implementations on ARM is largely C based with speedup generated primarily through algorithm changes. In comparison, vector optimization on Intel platforms with SSE is currently much more aggressive, which explains the disparity on decoding performance.
455
456 41 ttsou
<pre>
457 17 ttsou
--- Floating point to integer conversions
458
-- Testing 40000 iterations of 3120 values
459
- Measuring conversion time
460
- Elapsed time base...                 0.384097 secs
461
- Validating SSE conversion results... PASS
462
- Measuring conversion time
463
- Elapsed time SSE ...                 0.100877 secs
464
- Quotient...                          3.807578
465 41 ttsou
</pre>
466 17 ttsou
467 41 ttsou
<pre>
468 17 ttsou
[+] Testing: GSM TCH/AFS 7.95 (recursive, flushed, punctured)
469
[.] Input length  : ret = 165  exp = 165 -> OK
470
[.] Output length : ret = 448  exp = 448 -> OK
471
[.] Pre computed vector checks:
472
[..] Encoding: OK
473
[..] Decoding base: 
474
[..] Decoding SIMD: 
475
[..] Code N 3
476
[..] Code K 7
477
OK
478
[.] Random vector checks:
479
[.] Testing baseline:
480
[..] Encoding / Decoding 10000 cycles:
481
[.] Elapsed time........................ 5.371288 secs
482
[.] Rate................................ 0.834064 Mbps
483 3 ttsou
[.] Testing SIMD:
484
[..] Encoding / Decoding 10000 cycles:
485
[.] Elapsed time........................ 1.016621 secs
486
[.] Rate................................ 4.406755 Mbps
487
[.] Speedup............................. 5.283471
488 41 ttsou
</pre>
489 3 ttsou
490 41 ttsou
*!BeagleBoard-xM (ARM Cortex-A8 800 MHz)*
491
<pre>
492 5 ttsou
--- Floating point to integer conversions
493 3 ttsou
-- Testing 40000 iterations of 3120 values
494
- Measuring conversion time
495
- Elapsed time base...                  6.292542 secs
496 4 ttsou
- Validating SIMD conversion results... PASS
497 3 ttsou
- Measuring conversion time
498
- Elapsed time SIMD ...                 0.839081 secs
499
- Quotient...                           7.499326
500 41 ttsou
</pre>
501 1 ttsou
502 41 ttsou
<pre>
503 31 ttsou
[+] Testing: GSM TCH/AFS 7.95 (recursive, flushed, punctured)
504
[.] Input length  : ret = 165  exp = 165 -> OK
505
[.] Output length : ret = 448  exp = 448 -> OK
506
[.] Pre computed vector checks:
507
[..] Encoding: OK
508
[..] Decoding base: 
509
[..] Decoding SIMD: 
510
[..] Code N 3
511
[..] Code K 7
512 1 ttsou
OK
513 32 ttsou
[.] Random vector checks:
514
[.] Testing baseline:
515
[..] Encoding / Decoding 10000 cycles:
516
[.] Elapsed time........................ 21.963257 secs
517
[.] Rate................................ 0.203977 Mbps
518
[.] Testing SIMD:
519
[..] Encoding / Decoding 10000 cycles:
520
[.] Elapsed time........................ 3.083282 secs
521
[.] Rate................................ 1.452997 Mbps
522
[.] Speedup............................. 7.123337
523 41 ttsou
</pre>
524 32 ttsou
525
526 41 ttsou
*Full Results*
527 32 ttsou
528 41 ttsou
"[http://tsou.cc/gsm/shuttle.txt":http://tsou.cc/gsm/haswell.txt]
529 31 ttsou
530 41 ttsou
"[http://tsou.cc/gsm/beagle.txt":http://tsou.cc/gsm/arndale.txt]
531 1 ttsou
532 30 ttsou
533 1 ttsou
534 41 ttsou
h2. Authors
535 1 ttsou
536
537 49 neels
[[OsmoTRX]] is currently developed and maintained by Thomas Tsou with generous support from Fairwaves, the Open Technology Institute, and Ettus Research. The code is derived from the [[OsmoBTS:OpenBTS]] project, which was originally developed by David Burgess and Harvind Samra at Range Networks.
Add picture from clipboard (Maximum size: 48.8 MB)