Project

General

Profile

OsmoTRX » History » Version 49

neels, 06/28/2016 02:02 PM

1 41 ttsou
{{>toc}}
2 1 ttsou
3 41 ttsou
h1. [[OsmoTRX]]
4 1 ttsou
5
6 41 ttsou
[[OsmoTRX]] is a software-defined radio transceiver that implements the Layer 1 physical layer of a BTS comprising the following 3GPP specifications:
7
* TS 05.01 "Physical layer on the radio path"
8
* TS 05.02 "Multiplexing and Multiple Access on the Radio Path"
9
* TS 05.04 "Modulation"
10
* TS 05.10 "Radio subsystem synchronization"
11 1 ttsou
12 49 neels
[[OsmoTRX]] is based on the transceiver code from the [[OsmoBTS:OpenBTS]] project, but setup to operate independently with the purpose of using with non-OpenBTS software and projects, while still maintaining backwards compatibility with [[OsmoBTS:OpenBTS]]. Currently there are numerous features contained in [[OsmoTRX:]] that extend the functionality of the [[OsmoBTS:OpenBTS]] transceiver. These features include enhanced support for various embedded platforms - notably ARM - and dual channel diversity support for the Fairwaves [[umtrx:]].
13 41 ttsou
14 46 laforge
h2. OsmoTRX in the Osmocom GSM architecture
15
16
{{graphviz_link()
17
digraph G {
18
    rankdir = LR;
19
    SDR -> OsmoTRX [label="Raw Samples"];
20
    OsmoTRX -> OsmoBTS [label="bursts over UDP"];
21
    OsmoBTS -> OsmoNITB [label="Abis/IP"];
22
    OsmoBTS -> OsmoPCU [label="pcu_sock"];
23
    OsmoPCU -> OsmoSGSN [label="Gb/IP"];
24
    OsmoTRX [color=red];
25
}
26
}}
27 41 ttsou
28
h2. Features
29
30
31
*Intel SSE Support*
32 6 ttsou
* SSE3
33
* SSE4.1
34 20 ttsou
35 41 ttsou
On Intel processors, [[OsmoTRX]] makes heavy use of the Streaming SIMD Extensions (SSE) instruction set. Accelerated operations include pulse shape filtering, resampling, sequence correlation, and many other signal processing operations. SSE3 is the minimum requirement for accelerated use.
36 1 ttsou
37 20 ttsou
SSE3 is present in the majority of Intel processors since later versions of the Pentium 4 architecture and is also present on low power Atom processors. Support is automatically detected at build time. For additional performance information, please see the performance and benchmarks section.
38 29 ttsou
39 41 ttsou
*ARM Support*
40 1 ttsou
* NEON
41
* NEON-VFPv4
42 20 ttsou
43 41 ttsou
[[OsmoTRX]] runs on a variety of ARM processors with and without NEON coprocessors. Like SSE on Intel processors, NEON provides acceleration with SIMD vectorized instructions.
44 20 ttsou
45 1 ttsou
Tested popular architectures include ARM11 (Raspberry Pi), Cortex-A8 (!BeagleBoard), and Cortex-A15 (!ArndaleBoard). Loosely speaking, these platforms are representative of low cost embedded devices, mid-level handsets, and high-end smartphones respectively. Similarly, in order, these platforms include no NEON coprocessor, standard NEON, and NEON-VFPv4. The latter NEON variation, VFPv4, provides additional fused-multiply-accumulate (FMA) instructions useful for many DSP operations.
46
47 26 ttsou
NEON support must be enabled by the user at build time. For additional information, please see the configuration and performance and benchmarks sections.
48 37 ttsou
49 41 ttsou
*Dual Channel (UmTRX and B210)*
50 7 ttsou
51 1 ttsou
Two dual channel modes are available: standard dual channel mode and diversity. In standard dual channel mode, each RF
52 28 ttsou
path of the dual channel device supports a different ARFCN. Each path operates independently a
53 1 ttsou
nd operates similarly to two separate devices. GSM channel capacity in this mode is doubled. This option can be configured at run time from the command line.
54
55 41 ttsou
*Dual Channel Diversity (UmTRX, experimental)*
56 1 ttsou
57 28 ttsou
Diversity mode is similar to the standard dual channel mode except each antenna supports both ARFCN channels. In this case, the receiver sample bandwidth is widened to handle both ARFCN's and subsequently converted and demultiplexed into separate sample streams. Each GSM receive path is fed dual signals, where antenna selection diversity is performed by taking the stronger signal on a burst-by-burst basis. This diversity setup improves uplink reception performance in multipath fading environments.
58 16 ttsou
59 28 ttsou
Limitations are increased CPU utilization and that ARFCN spacing is restricted (currently at 400 kHz) by the receiver sampling bandwidth. Setting the ARFCN spacing beyond the sampling limit will disable the diversity path and operate in standard dual channel mode. This options can be configured at run time from the command line.
60 20 ttsou
61 41 ttsou
*Uplink Burst Detection*
62 39 ttsou
63 49 neels
[[OsmoTRX]] utilizes an updated receive burst detection algorithm that provides greater sensitivity and reliability than the original [[OsmoBTS:OpenBTS]] approach, which relied on energy detection for the initial stage of burst acquisition.
64 39 ttsou
65 1 ttsou
The limitation of the previous approach was that it was slow to adapt to highly transient power levels and false burst detection in challenging situations such as receiver saturation, which may occur in close range lab testing. The other issue was that a high degree of level tuning was often necessary to operate reliably.
66
67
The current receiver code addressed those limitations for improved performance in a wider variety of environments.
68
69 41 ttsou
*Low Phase Error Modulator*
70 16 ttsou
71
The default GSM downlink signal is configured for low distortion using a linearized GMSK modulator. The implementation is based on a two pulse Laurent approximation of continuous phase modulated (CPM) signals. The baseband output signal measures with very low phase error and is capable of passing industry spectrum mask requirements. Please note that actual performance will depend strongly on the particular device in use.
72 1 ttsou
73 41 ttsou
Theoretical details can be found in the report on "GMSK":http://tsou.cc/gsm/report_gmsk.pdf. Octave / Matlab code for "pulse generation":http://tsou.cc/gsm/laurent.m is also available.
74 1 ttsou
75
This option can be enabled or disabled at run time from the command line.
76 28 ttsou
77
Very Low Phase Error (Ettus Research N200)
78 16 ttsou
79 42 laforge
!http://tsou.cc/gsm/osmo-trx-phase75.gif!
80 1 ttsou
81 21 ttsou
Spectrum Mask (Ettus Research N200)
82 1 ttsou
83 42 laforge
!http://tsou.cc/gsm/osmo-trx-spectrum75.gif!
84 1 ttsou
85
86 41 ttsou
h2. RF Hardware support
87 1 ttsou
88 41 ttsou
89
Multiple RF devices are currently supported. These include USRP family products from Ettus Research, and the [[UmTRX]] from Fairwaves.
90
91
||*Fairwaves*||*Notes*||
92 20 ttsou
||UmTRX||Dual channel||
93
94
All Ettus Research devices are supported.
95 1 ttsou
96 41 ttsou
||*Ettus Research*||*Notes*||
97 1 ttsou
||USRP1||Requires legacy libusrp driver and clocking modification||
98
||USRP2||10 MHz external reference required||
99
||B100||
100
||B110||
101
||B200||GPSDO or 10 MHz external reference recommended||
102
||B210||Dual channel, 10 MHz external reference recommended||
103
||N200||
104 20 ttsou
||N210||
105 1 ttsou
||E100||
106
||E110||
107
108 41 ttsou
h2. Embedded Platform Support
109 1 ttsou
110 41 ttsou
111
[[OsmoTRX]] has been tested on the multiple embedded platforms representing a wide range of device types. Low cost ARM devices are generally limited by memory and I/O as much CPU utilization.
112
113 1 ttsou
Running a full or near full ARFCN configuration (7 simultaneous TCH channels with Combination V) may require running the GSM stack remotely, which can be configured at runtime on the command line. This limitation appears to be scheduling related more so than lack of CPU resources, and may be resolved at a later time.
114
115 43 laforge
|_.Platform|_.SoC*|_.Processor|_.SIMD/FPU|_.Testing Notes|
116
|ArndaleBoard|Samsung Exynos 5250|ARM Cortex-A15|NEON-VFPv4|7 TCH|
117
|BeagleBoard-xM|Texas Instruments OMAP3|ARM Cortex-A8|NEON|7 TCH, remote [[osmobts:]] stack|
118
|Ettus E100|Texas Instruments OMAP3|ARM Cortex-A8|NEON|7 TCH, remote [[osmobts:]] stack|
119
|Raspberry Pi|Broadcom BCM2835|ARM11|VFP|2 TCH, remote [[osmobts:]] stack|
120
|Shuttle PC|NA|Intel Atom D2550|SSE3|Dual channel, 15 TCH|
121 1 ttsou
122
All embedded plaforms were tested with low-phase error modulator disabled. Use of the more accurate modulator on embedded platforms has not been extensively tested.
123 19 ttsou
124 41 ttsou
h2. Mailing List
125 22 ttsou
126 41 ttsou
127 49 neels
For development purposes, [[OsmoTRX:]] is discussed on both [[OsmoBTS:OpenBTS]] and [[OpenBSC:]] mailing lists at openbts-discuss@lists.sourceforge.net and openbsc@lists.osmocom.org respectively.
128 41 ttsou
129 1 ttsou
Please direct questions and bug reports to the list appropriate for the GSM stack being used.
130 41 ttsou
131 47 laforge
Subscription information is available at "and [http://lists.osmocom.org/mailman/listinfo/openbsc/":https://lists.sourceforge.net/lists/listinfo/openbts-discuss].  Please make sure to read our [[cellular-infrastructure:MailingListRules]] before posting.
132 1 ttsou
133 41 ttsou
h2. GPRS support
134 1 ttsou
135
136 44 laforge
[[OsmoTRX]] supports GPRS through [[osmobts:]].
137 1 ttsou
138 49 neels
For GPRS support with [[OsmoBTS:OpenBTS]], please use the transceiver supplied with [[OsmoBTS:OpenBTS]].
139 41 ttsou
140
141
h2. Source code
142
143
144 1 ttsou
The source code is available from git.osmocom.org (module osmo-trx).
145 18 ttsou
146
Public read-only access is available via
147 41 ttsou
<pre>
148 19 ttsou
$ git clone git://git.osmocom.org/osmo-trx
149 41 ttsou
</pre>
150 1 ttsou
You can browse it via cgit: http://cgit.osmocom.org/cgit/osmo-trx/
151
152 48 neels
h2. Dependencies
153 1 ttsou
154 48 neels
Install libusb-1.0 and libbost dev packages. On debian 8.4:
155 1 ttsou
156 48 neels
<pre>
157
sudo apt-get install --no-install-recommends libusb-1.0-0-dev libboost-dev
158
</pre>
159 41 ttsou
160 48 neels
*UHD*
161 1 ttsou
162 48 neels
Unless using USRP1, you will need the Universal Hardware Driver (UHD),
163
which is available from Ettus Research or Fairwaves; the UHD implementation
164
must match your hardware:
165
166
* Ettus Research UHD for USRP devices
167
* Fairwaves UHD with [[UmTRX]]
168
* USRP1 does not use the UHD driver, it is supported through the legacy libusrp driver provided in GNU Radio 3.4.2.
169
170
*Debian*
171
172
At time of writing, the debian 8.4 packages for UHD are sufficient for running osmo-trx and osmo-bts-trx.
173
here are some of the packages that need to be installed:
174
175
<pre>
176
sudo apt-get install --no-install-recommends libuhd-dev uhd-host
177
</pre>
178
179
It may be necessary to use the pothos PPA instead:
180
181
<pre>
182
sudo add-apt-repository ppa:guruofquality/pothos
183
sudo apt-get update
184
sudo apt install libboost-dev uhd
185
</pre>
186
187
*Firmware*
188
189
You also need to download the firmware using a script provided by the UHD package.
190
Instructions suggest running the script as root, but this way is less dangerous:
191
192
<pre>
193
sudo mkdir /usr/share/uhd
194
sudo chown $USER: /usr/share/uhd
195
/usr/lib/uhd/utils/uhd_images_downloader.py
196
</pre>
197
198
*Group*
199
200
You may need to add yourself to the usrp group:
201
202
<pre>
203
sudo gpasswd -a $USER usrp
204
# and re-login to acquire the group
205
</pre>
206
207
*Verify*
208
209
run uhd_find_devices to make sure b200 is available:
210
211
<pre>
212
$ uhd_find_devices 
213
linux; GNU C++ version 4.9.1; Boost_105500; UHD_003.007.003-0-unknown
214
215
--------------------------------------------------
216
-- UHD Device 0
217
--------------------------------------------------
218
Device Address:
219
    type: b200
220
    name: MyB210
221
    serial: 1C0FFEE
222
    product: B210
223
</pre>
224
225
h2. Configuration and Build
226
227 41 ttsou
First, run autoreconf to remake the build system files.
228 1 ttsou
<pre>
229 18 ttsou
$ autoreconf -i
230 41 ttsou
...
231 18 ttsou
</pre>
232 41 ttsou
233 18 ttsou
*Intel Platforms (All)*
234 1 ttsou
235 41 ttsou
Intel SSE support is automatically detected on Intel x86 platforms. No user intervention is necessary. The general configuration defaults to the low phase error modulator. Atom users may wish to use the low-CPU utilization modulator, which can be later enabled from the command line at runtime.
236 18 ttsou
<pre>
237 1 ttsou
$ ./configure
238
...
239 19 ttsou
checking whether mmx is supported... yes
240 18 ttsou
checking whether sse is supported... yes
241
checking whether sse2 is supported... yes
242
checking whether sse3 is supported... yes
243
checking whether ssse3 is supported... yes
244
checking whether sse4.1 is supported... yes
245
checking whether sse4.2 is supported... yes
246 41 ttsou
...
247 18 ttsou
</pre>
248 41 ttsou
249 18 ttsou
*ARM Platforms with NEON*
250 41 ttsou
251
Many popular ARM development boards fall under this category including BeagleBoard, PandaBoard, and Ettus E100 USRP. This option will disable the low phase error modulator, which can be re-enabled at runtime. NEON support must be manually enabled.
252 24 ttsou
<pre>
253 41 ttsou
$ ./configure --with-neon
254 1 ttsou
</pre>
255 41 ttsou
256 1 ttsou
*ARM Platforms with NEON-VFPv4*
257 41 ttsou
258
Currently very few development platforms support this instruction set, which is seen mainly in high end smartphones and tablets. Available development boards are ArndaleBoard and ODROID-XU. This option will disable the low phase error modulator, which can be re-enabled at runtime. NEON-VFPv4 support must be manually enabled.
259 1 ttsou
<pre>
260 41 ttsou
$ ./configure --with-neon-vfpv4
261 1 ttsou
</pre>
262 41 ttsou
263 1 ttsou
*ARM Platforms without NEON*
264 41 ttsou
265 1 ttsou
This configuration mainly targets the Raspberry Pi. ARM platforms without NEON vector units are almost always very slow processors, and generally not very suitable for running [[OsmoTRX]]. Running [[OsmoTRX]] on a Raspberry Pi, however, is possible along with limited TCH (voice) channel support. Currently this configuration requires minor code changes.
266
267
Coming soon...
268 41 ttsou
269 1 ttsou
*Build and Install*
270 16 ttsou
271
After configuration, installation is simple.
272 41 ttsou
273 16 ttsou
<pre>
274
$ make
275 41 ttsou
$ sudo make install
276 16 ttsou
</pre>
277
278 41 ttsou
h2. Running
279 16 ttsou
280 41 ttsou
281
[[OsmoTRX]] can be configured with a variety of options on the command line. In most cases, the default settings will suffice. Notable options include UHD device argument passing, which is often useful for using network based devices with firewalls, and external 10 MHz reference support.
282
283
<pre>
284 16 ttsou
$ osmo-trx -h
285
linux; GNU C++ version 4.8.1 20130603 (Red Hat 4.8.1-1); Boost_105300; UHD_003.005.004-140-gfb32ed16
286
287
Options:
288
  -h    This text
289 1 ttsou
  -a    UHD device args
290 16 ttsou
  -l    Logging level (EMERG, ALERT, CRT, ERR, WARNING, NOTICE, INFO, DEBUG)
291
  -i    IP address of GSM core
292 1 ttsou
  -p    Base port number
293
  -d    Enable dual channel diversity receiver
294 16 ttsou
  -x    Enable external 10 MHz reference
295
  -s    Samples-per-symbol (1 or 4)
296 38 ttsou
  -c    Number of ARFCN channels (default=1)
297
  -f    Enable C0 filler table
298 16 ttsou
  -o    Set baseband frequency offset (default=auto)
299 41 ttsou
</pre>
300 16 ttsou
301 41 ttsou
<pre>
302 1 ttsou
$ osmo-trx -a "addr=192.168.10.2"
303 16 ttsou
linux; GNU C++ version 4.8.1 20130603 (Red Hat 4.8.1-1); Boost_105300; UHD_003.004.000-b14cde5
304
305
Config Settings
306
   Log Level............... INFO
307 1 ttsou
   Device args............. addr=192.168.10.2
308 16 ttsou
   TRX Base Port........... 5700
309 1 ttsou
   TRX Address............. 127.0.0.1
310 16 ttsou
   Channels................ 1
311
   Samples-per-Symbol...... 4
312
   External Reference...... Disabled
313
   Diversity............... Disabled
314
315 41 ttsou
-- Opening a [[UmTRX]] device...
316 13 ttsou
-- Current recv frame size: 1472 bytes
317 38 ttsou
-- Current send frame size: 1472 bytes
318 41 ttsou
-- Setting [[UmTRX]] 4 SPS
319 38 ttsou
-- Transceiver active with 1 channel(s)
320 41 ttsou
</pre>
321 38 ttsou
322 1 ttsou
323 49 neels
h2. [[OsmoTRX]] with [[OsmoBTS:OpenBTS]]
324 38 ttsou
325
326 49 neels
[[OsmoTRX]] is fully compatible with [[OsmoBTS:OpenBTS]] for voice and SMS services. Due to differences in handing of GPRS, [[OsmoTRX]] does not support GPRS when used with [[OsmoBTS:OpenBTS]], however, GPRS with the Osmocom stack is supported.
327 41 ttsou
328 49 neels
For use with [[OsmoBTS:OpenBTS]], enable the filler table option "Enable C0 filler table", which enables [[OsmoBTS:OpenBTS]] style idle bursts and retransmissions.
329 41 ttsou
330
<pre>
331 1 ttsou
$ osmo-trx -f
332 41 ttsou
</pre>
333 17 ttsou
334 49 neels
The [[OsmoTRX]] transceiver should be started before running [[OsmoBTS:OpenBTS]]. No symbolic link to './transceiver' should exist in the [[OsmoBTS:OpenBTS]] directory. This prevents [[OsmoBTS:OpenBTS]] from starting its own transceiver instance.
335 35 ttsou
336 1 ttsou
337 41 ttsou
h2. Benchmarks
338 1 ttsou
339 35 ttsou
340 49 neels
A variety of performance benchmarks are available for various code optimizations. These include floating point - integer conversions, convolution, and convolutional decoding. Note that convolutional decoding does not take place in [[OsmoTRX]], but one stop higher in the Layer 1 stack - either in [[osmobts:]] or [[OsmoBTS:OpenBTS]] core.
341 35 ttsou
342 41 ttsou
*Repository*
343
344
Currently the trx-bench repository holds the test files and contains the same NEON and SSE code as [[OsmoTRX]]. The test code may be merged into [[OsmoTRX]] at a later time, but, for now, it exists as a separate repository. NEON configure options are the same as [[OsmoTRX]].
345
346
<pre>
347 35 ttsou
$ git clone https://github.com/ttsou/trx-bench.git
348
349
$ cd trx-bench
350
$ autoreconf -i
351
$ ./configure [--with-neon] [--with-neon-vfp4]
352 1 ttsou
$ make
353
$ src/conv_test
354 35 ttsou
$ src/convert_test
355
$ src/convolve_test
356 41 ttsou
</pre>
357 35 ttsou
358
The convolutional decoding test includes command options including experimental support for benchmarking with multiple threads.
359
360 41 ttsou
<pre>
361 35 ttsou
$ ./conv_test -h
362
Options:
363
  -h    This text
364 1 ttsou
  -i    Number of iterations
365
  -j    Number of threads for benchmark (1 to 32)
366 13 ttsou
  -b    Run benchmark tests
367
  -a    Run validity checks
368
  -e    Run bit-error-rate tests
369 41 ttsou
</pre>
370 10 ttsou
371 1 ttsou
Selected benchmark results are provided below. All tests are run on a single core only.
372
373 41 ttsou
*Intel Haswell (i7 4770K 3.5 GHz)*
374 1 ttsou
375 41 ttsou
<pre>
376 1 ttsou
--- Floating point to integer conversions
377
-- Testing 40000 iterations of 3120 values
378
- Measuring conversion time
379
- Elapsed time base...                  0.065508 secs
380
- Validating SIMD conversion results... PASS
381 3 ttsou
- Measuring conversion time
382
- Elapsed time SIMD ...                 0.011424 secs
383
- Speedup...                            5.734244
384 41 ttsou
</pre>
385 1 ttsou
386 41 ttsou
<pre>
387 3 ttsou
[+] Testing: GSM TCH/AFS 7.95 (recursive, flushed, punctured)
388
[.] Input length  : ret = 165  exp = 165 -> OK
389
[.] Output length : ret = 448  exp = 448 -> OK
390
[.] Pre computed vector checks:
391
[..] Encoding: OK
392
[..] Decoding base: 
393
[..] Decoding SIMD: 
394 1 ttsou
[..] Code N 3
395
[..] Code K 7
396
OK
397
[.] Random vector checks:
398
[.] Testing baseline:
399 17 ttsou
[..] Encoding / Decoding 10000 cycles:
400
[.] Elapsed time........................ 1.435066 secs
401
[.] Rate................................ 3.121808 Mbps
402
[.] Testing SIMD:
403
[..] Encoding / Decoding 10000 cycles:
404
[.] Elapsed time........................ 0.073524 secs
405
[.] Rate................................ 60.932485 Mbps
406
[.] Speedup............................. 19.518334
407 41 ttsou
</pre>
408 17 ttsou
409 41 ttsou
*Intel Atom (D2500 1.86 GHz)*
410
<pre>
411 17 ttsou
--- Floating point to integer conversions
412
-- Testing 40000 iterations of 3120 values
413
- Measuring conversion time
414
- Elapsed time base...                 1.147449 secs
415 1 ttsou
- Validating SSE conversion results... PASS
416 17 ttsou
- Measuring conversion time
417 1 ttsou
- Elapsed time SSE ...                 0.347838 secs
418
- Quotient...                          3.298803
419 41 ttsou
</pre>
420 17 ttsou
421 41 ttsou
<pre>
422 1 ttsou
[+] Testing: GSM TCH/AFS 7.95 (recursive, flushed, punctured)
423
[.] Input length  : ret = 165  exp = 165 -> OK
424
[.] Output length : ret = 448  exp = 448 -> OK
425
[.] Pre computed vector checks:
426 17 ttsou
[..] Encoding: OK
427
[..] Decoding base: 
428
[..] Decoding SIMD: 
429
[..] Code N 3
430
[..] Code K 7
431
OK
432
[.] Random vector checks:
433 19 ttsou
[.] Testing baseline:
434
[..] Encoding / Decoding 10000 cycles:
435
[.] Elapsed time........................ 11.822688 secs
436 17 ttsou
[.] Rate................................ 0.378932 Mbps
437
[.] Testing SIMD:
438
[..] Encoding / Decoding 10000 cycles:
439
[.] Elapsed time........................ 0.550423 secs
440
[.] Rate................................ 8.139195 Mbps
441
[.] Speedup............................. 21.479277
442 41 ttsou
</pre>
443 17 ttsou
444 41 ttsou
*!ArndaleBoard (ARM Cortex-A15 1.7 GHz)*
445 17 ttsou
446
Please note that the Viterbi implementations on ARM is largely C based with speedup generated primarily through algorithm changes. In comparison, vector optimization on Intel platforms with SSE is currently much more aggressive, which explains the disparity on decoding performance.
447
448 41 ttsou
<pre>
449 17 ttsou
--- Floating point to integer conversions
450
-- Testing 40000 iterations of 3120 values
451
- Measuring conversion time
452
- Elapsed time base...                 0.384097 secs
453
- Validating SSE conversion results... PASS
454
- Measuring conversion time
455
- Elapsed time SSE ...                 0.100877 secs
456
- Quotient...                          3.807578
457 41 ttsou
</pre>
458 17 ttsou
459 41 ttsou
<pre>
460 17 ttsou
[+] Testing: GSM TCH/AFS 7.95 (recursive, flushed, punctured)
461
[.] Input length  : ret = 165  exp = 165 -> OK
462
[.] Output length : ret = 448  exp = 448 -> OK
463
[.] Pre computed vector checks:
464
[..] Encoding: OK
465
[..] Decoding base: 
466
[..] Decoding SIMD: 
467
[..] Code N 3
468
[..] Code K 7
469
OK
470
[.] Random vector checks:
471
[.] Testing baseline:
472
[..] Encoding / Decoding 10000 cycles:
473
[.] Elapsed time........................ 5.371288 secs
474
[.] Rate................................ 0.834064 Mbps
475 3 ttsou
[.] Testing SIMD:
476
[..] Encoding / Decoding 10000 cycles:
477
[.] Elapsed time........................ 1.016621 secs
478
[.] Rate................................ 4.406755 Mbps
479
[.] Speedup............................. 5.283471
480 41 ttsou
</pre>
481 3 ttsou
482 41 ttsou
*!BeagleBoard-xM (ARM Cortex-A8 800 MHz)*
483
<pre>
484 5 ttsou
--- Floating point to integer conversions
485 3 ttsou
-- Testing 40000 iterations of 3120 values
486
- Measuring conversion time
487
- Elapsed time base...                  6.292542 secs
488 4 ttsou
- Validating SIMD conversion results... PASS
489 3 ttsou
- Measuring conversion time
490
- Elapsed time SIMD ...                 0.839081 secs
491
- Quotient...                           7.499326
492 41 ttsou
</pre>
493 1 ttsou
494 41 ttsou
<pre>
495 31 ttsou
[+] Testing: GSM TCH/AFS 7.95 (recursive, flushed, punctured)
496
[.] Input length  : ret = 165  exp = 165 -> OK
497
[.] Output length : ret = 448  exp = 448 -> OK
498
[.] Pre computed vector checks:
499
[..] Encoding: OK
500
[..] Decoding base: 
501
[..] Decoding SIMD: 
502
[..] Code N 3
503
[..] Code K 7
504 1 ttsou
OK
505 32 ttsou
[.] Random vector checks:
506
[.] Testing baseline:
507
[..] Encoding / Decoding 10000 cycles:
508
[.] Elapsed time........................ 21.963257 secs
509
[.] Rate................................ 0.203977 Mbps
510
[.] Testing SIMD:
511
[..] Encoding / Decoding 10000 cycles:
512
[.] Elapsed time........................ 3.083282 secs
513
[.] Rate................................ 1.452997 Mbps
514
[.] Speedup............................. 7.123337
515 41 ttsou
</pre>
516 32 ttsou
517
518 41 ttsou
*Full Results*
519 32 ttsou
520 41 ttsou
"[http://tsou.cc/gsm/shuttle.txt":http://tsou.cc/gsm/haswell.txt]
521 31 ttsou
522 41 ttsou
"[http://tsou.cc/gsm/beagle.txt":http://tsou.cc/gsm/arndale.txt]
523 1 ttsou
524 30 ttsou
525 1 ttsou
526 41 ttsou
h2. Authors
527 1 ttsou
528
529 49 neels
[[OsmoTRX]] is currently developed and maintained by Thomas Tsou with generous support from Fairwaves, the Open Technology Institute, and Ettus Research. The code is derived from the [[OsmoBTS:OpenBTS]] project, which was originally developed by David Burgess and Harvind Samra at Range Networks.
Add picture from clipboard (Maximum size: 48.8 MB)