# SIEMENS

# **ISDN Ech-Cancellation Circuit (IEC-Q)**

# **PEB 2091**

#### **Preliminary Data**

**CMOS IC** 

| Туре       | Ordering Code | Package        |
|------------|---------------|----------------|
| PEB 2091-N | Q67100-H6119  | PL-CC-44 (SMD) |

The PEB 2091 ISDN Echo-Cancellation Circuit (IEC-Q) is an advanced CMOS transceiver for ISDN Basic Access Digital Subscriber Loops with 2B1Q line code.

Control and algorithmic requirements are implemented according to the layer-1 specification of the American National Standard Institute (ANSI) for a 144 bit/s full duplex data transmission.

Together with the flexible IOM-2 interface, the IEC-Q is fully compatible with the PEB 2081 (SBCX), PEB 2055 (EPIC<sup>™</sup>) and PEB 2075 (IDEC<sup>™</sup>) devices.

#### Features

- U Transceiver with 2B1Q line code according to layer-1 specification of ANSI
- Activation and deactivation procedure according to T1D1 layer-1 specification and CCITT I.430
- Programmable operation modes
- IOM-2 interface
- Adaptive echo cancellation
- Adaptive equalization
- Automatic polarity adaptation
- Clock recovery (frame and bit synchronization)
- Low power consumption

#### **Basic System Functions**

- Full duplex data transmission and reception at the U reference point according to the layer-1 specification of the American National Standard Institute:
  - 144 bit/s user bit rate over a two-wire subscriber loop
  - 2B1Q block code (2 binary, 1 quaternary)
  - 4 bit/s maintenance channel for transmission of data loop back commands and detected transmission errors
  - monitoring of transmission errors
  - operating at telephone loop plant LOOP#1 up to LOOP#15 as defined by American National Standard
- Transposition of quaternary to binary data and vice versa (coding, decoding, scrambling, descrambling, phase adaption)
- Built-in wake up unit for activation from power down state
- Activation and deactivation procedure according to T1D1 layer-1 specification and CCITT I.430
- Adaption of internal interfaces to the current signal direction by programmable operation modes:
  - LT:Line termination in public or private exchangeTE:Terminal modeNT:Network termination connected to SBCXNT-PBX:Trunk module (TDM)
- Adaptive echo cancellation
- Adaptive equalization
- Automatic polarity adaption
- Clock recovery (frame and bit synchronization) in all applications
- Optimized for working in conjunction with SBCX, ICC, EPIC and IDEC telecom ICs via IOM-2 interface
- Data speed conversion between the U reference point and the IOM frames
- Handling of the commands and indications contained in the IOM-2 C/I channel for deactivation, activation, supervision of power supply unit and equipment for testing
- Data availability via monitor-channel:
  - CRC transmission errors
  - Measurement value of the loop current
  - Echo canceler coefficients and status values, which can be used to indicate the state of the loop
- Switching test loops
- Generation of synchronized 7.68-MHz clock for SBCX in NT mode
- Low power consumption: standby: max. 30 mW
  - active: max. 300 mW

#### **Functional Description**

The IEC-Q can be subdivided into three main blocks:

- LIU Line Interface Unit
- SIU System Interface Unit
- REC Receiver

The Line Interface Unit (LIU) contains the crystal oscillator and all of the analog functions, namely the A/D converter in the receive path, pulse shaping D/A converter and line driver in the transmit path.

The System Interface Unit (SIU) features the activation and deactivation procedures, the timing recovery and synchronization, maintenance data handling, frame conversion and speed adaption.

The Receiver block (REC) performs the filter algorithmic functions using digital signal processing techniques. In a modular multi-processor concept modules for echo cancellation, pre- and post-equalization, phase adaption and frame detection are implemented.



#### **Block Diagram of IEC-Q**

# **Pin Definitions and Functions**

| Pin No. | Symbol            | Input (I)<br>Output (O) | Function<br>))                                                                                                                                          |  |  |  |
|---------|-------------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 7, 8    | V <sub>DDA1</sub> | S                       | Analog supply voltage 5 V $\pm$ 5%                                                                                                                      |  |  |  |
| 13      | V <sub>DDA2</sub> | S                       | Analog supply voltage 5 V $\pm$ 5%                                                                                                                      |  |  |  |
| 5       | GNDA1             | S                       | Analog 0 V                                                                                                                                              |  |  |  |
| 16      | GNDA2             | S                       | Analog 0 V                                                                                                                                              |  |  |  |
| 1, 2    | V <sub>DDD</sub>  | S                       | Digital supply voltage 5 V $\pm$ 5%                                                                                                                     |  |  |  |
| 23      | GNDD              | S                       | Digital 0 V                                                                                                                                             |  |  |  |
| 11      | XTAL0             | 1                       | Crystal connection<br>or external clock input                                                                                                           |  |  |  |
| 10      | XTAL1             | 1                       | Crystal connection. Left unconnected if external clock is used                                                                                          |  |  |  |
| 15      | AIN               | 1                       | Received line signal to hybrid                                                                                                                          |  |  |  |
| 14      | BIN               | 1                       | Received line signal to hybrid                                                                                                                          |  |  |  |
| 6       | AOUT              | 0                       | Transmitted line signal to hybrid                                                                                                                       |  |  |  |
| 4       | BOUT              | 0                       | Transmitted line signal to hybrid                                                                                                                       |  |  |  |
| 9       | V <sub>REF</sub>  | 0                       | $V_{\text{REF}}$ -pin to buffer internally generated voltage with capacitor 10 nF vs GNDA                                                               |  |  |  |
| 31      | DCLK              | I/O                     | IOM-2 device clock                                                                                                                                      |  |  |  |
| 30      | FSC               | I/O                     | IOM-2 frame clock                                                                                                                                       |  |  |  |
| 26      | DIN               | 1                       | IOM-2 data input synchronous to DCLK                                                                                                                    |  |  |  |
| 22      | LT                | 1                       | LT mode (HIGH input = LT mode)<br>(LOW input = NT mode)                                                                                                 |  |  |  |
| 24      | BURST             | 1                       | NT-, NT-TE mode (LOW)<br>LT-, NT-PBX mode (HIGH)                                                                                                        |  |  |  |
| 36      | SLOT0             | 1                       | 256 kbit/s modes select<br>Allocation of time slot for BURST mode                                                                                       |  |  |  |
| 35      | SLOT1             | 1                       | 256 kbit/s modes select<br>Allocation of time slot for BURST mode                                                                                       |  |  |  |
| 33      | SLOT2             | 1                       | 256 kbit/s modes select<br>Allocation of time slot for BURST mode                                                                                       |  |  |  |
| 32      | PFCLE             | 1/0                     | TE/NT: 7.68-MHz clock out sync to line signal<br>NT-PBX: 512-kHz clock out sync to line signal<br>LT: Power feed off must be clamped to LOW if not used |  |  |  |

| Pin | Definitions | and Functions | (cont'd) |
|-----|-------------|---------------|----------|
|-----|-------------|---------------|----------|

| Pin No. | Symbol | Input (I)<br>Output (O) | Function                                                                                                                                                                                                     |  |  |  |  |
|---------|--------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 21      | PS1    | 1                       | NT: Power status (primary)                                                                                                                                                                                   |  |  |  |  |
| 22      | PS2    | 1                       | NT: Power status (secondary)                                                                                                                                                                                 |  |  |  |  |
| 18      | PFC    | 1                       | Monitor power feed (active HIGH)<br>serial data of power feed current                                                                                                                                        |  |  |  |  |
| 3       | TSP    | 1                       | Test single pulses<br>must be clamped to LOW if not used                                                                                                                                                     |  |  |  |  |
| 28      | RESQ   | I                       | Power-on reset (active LOW)<br>must be LOW at least 300 usec. The clock on the<br>DCLK pin has to be applied during RESET in the<br>LT-modes and in the NT-PBX-mode.<br>Must be clamped to HIGH if not used. |  |  |  |  |
| 27      | DOUT   | 0                       | IOM-2 data output synchronous to DCLK                                                                                                                                                                        |  |  |  |  |
| 37      | DISS   | 0                       | Disable supply (active HIGH)                                                                                                                                                                                 |  |  |  |  |
| 19      | RD1    | 0                       | Relay driver control (via IOM monitor)                                                                                                                                                                       |  |  |  |  |
| 20      | RD2    | 0                       | Relay driver control (via IOM monitor)                                                                                                                                                                       |  |  |  |  |
| 29      | TP     | 1                       | Test pin (must be clamped to LOW during normal operation)                                                                                                                                                    |  |  |  |  |
| 44      | TM0    | 1/0                     | Test pin (must be clamped to HIGH during normal operation)                                                                                                                                                   |  |  |  |  |
| 43      | TM1    | I/O                     | Test pin (must be clamped to HIGH during normal operation)                                                                                                                                                   |  |  |  |  |
| 42      | TM2    | 1/0                     | Test pin (must be clamped to HIGH during normal operation)                                                                                                                                                   |  |  |  |  |
| 41      | ТМЗ    | 1/0                     | Test pin (must be clamped to HIGH during normal operation)                                                                                                                                                   |  |  |  |  |
| 30      | TM4    | 1/0                     | TE mode (HIGH)<br>Auto mode (LOW)                                                                                                                                                                            |  |  |  |  |
| 39      | TM5    | 1/0                     | Test pin (must be clamped to HIGH during normal operation)                                                                                                                                                   |  |  |  |  |
| 38      | TM6    | I/O                     | Test pin (must be clamped to HIGH during normal operation)                                                                                                                                                   |  |  |  |  |
| 17      | TP2    | 0                       | Test pin                                                                                                                                                                                                     |  |  |  |  |

# Slot Assignment

| TM4 | BURST | LT | SLOT0    | SLOT1   | SLOT2 | Mode |             | SFR Marker<br>on FSC |
|-----|-------|----|----------|---------|-------|------|-------------|----------------------|
| 0   | 0     | 0  | 0        | 0       | 0     | NT   | automode    | no                   |
| 0   | 0     | 0  | 0        | 1       | 0     | TE   | automode    | no                   |
| 0   | 0     | 0  | 1        | 0       | 0     | NT   | automode    | yes                  |
| 0   | 0     | 0  | 1        | 1       | 0     | TE   | automode    | yes                  |
| 0   | 1     | 0  | slot ass | ignment |       | PBX  | automode    |                      |
| 0   | 1     | 1  | slot ass | ignment |       | LT   | automode    |                      |
| 1   | 0     | 0  | 0        | 0       | 0     | NT   | transparent | no                   |
| 1   | 0     | 0  | 0        | 1       | 0     | TE   | transparent | no                   |
| 1   | 0     | 0  | 1        | 0       | 0     | NT   | transparent | yes                  |
| 1   | 0     | 0  | 1        | 1       | 0     | TE   | transparent | yes                  |
| 1   | 1     | 0  | slot ass | ignment |       | PBX  | transparent |                      |
| 1   | 1     | 1  | slot ass | igment  |       | LT   | transparent |                      |

| Time Slot No. | SLOT0 | SLOT1 | SLOT2 | Bit No. |
|---------------|-------|-------|-------|---------|
| 0             | 0     | 0     | 0     | 031     |
| 1             | 0     | 0     | 1     | 3263    |
| 2             | 0     | 1     | 0     | 6495    |
| 3             | 0     | 1     | 1     | 96127   |
| 4             | 1     | 0     | 0     | 128159  |
| 5             | 1     | 0     | 1     | 160191  |
| 6             | 1     | 1     | 0     | 192223  |
| 7             | 1     | 1     | 1     | 224255  |

#### Interfaces of the IEC-Q

The specifications for the U interface with respect to layer-1 maintenance functions are based on the "T1 Basic Access Interface for Application at the Network Side of NT-Layer-1". The IOM-2 interface is described in the "ISDN Oriented Modular Interface Specification.

# U Interface

#### Frame Structure

|                     |                     | FRAMING      | 2B+D   |                   | 0                 | verhead B         | its (M1-M6 | i)                |                   |
|---------------------|---------------------|--------------|--------|-------------------|-------------------|-------------------|------------|-------------------|-------------------|
|                     | Quat<br>Positions   | 1-9          | 10-117 | 118s              | 118m              | 119s              | 119m       | 120s              | 120m              |
|                     | Bit<br>Positions    | 1-18         | 19-234 | 235               | 236               | 237               | 238        | 239               | 240               |
| Super<br>Frame<br># | Basic<br>Frame<br># | Sync<br>Word | 2B+D   | M1                | M2                | М3                | M4         | M5                | M6                |
| 1                   | 1                   | ISW          | 2B+D   | eoc <sub>a1</sub> | eoc <sub>a2</sub> | eoc <sub>a3</sub> | atc act    | 1                 | 1                 |
|                     | 2                   | SW           | 2B+D   | eoc <sub>dm</sub> | eoc <sub>i1</sub> | eoc <sub>i2</sub> | dea ps1    | 1                 | febe              |
|                     | 3                   | SW           | 2B+D   | eoc <sub>i3</sub> | eoc <sub>i4</sub> | eoc <sub>i5</sub> | 1 ps2      | crc <sub>1</sub>  | crc <sub>2</sub>  |
| r                   | 4                   | SW           | 2B+D   | eoc <sub>i6</sub> | eoc <sub>i7</sub> | eoc <sub>i8</sub> | 1 ntm      | crc <sub>3</sub>  | crc₄              |
|                     | 5                   | SW           | 2B+D   | eoc <sub>a1</sub> | eoc <sub>a2</sub> | eoc <sub>a3</sub> | 1 cso      | crc <sub>5</sub>  | crc <sub>6</sub>  |
|                     | 6                   | SW           | 2B+D   | eoc <sub>dm</sub> | eoc <sub>i1</sub> | eoc <sub>i2</sub> | 1          | crc <sub>7</sub>  | crc <sub>8</sub>  |
|                     | 7                   | SW           | 2B+D   | eoc <sub>i3</sub> | eoc <sub>i4</sub> | eoc <sub>i5</sub> | 1          | crc <sub>9</sub>  | crc <sub>10</sub> |
|                     | 8                   | SW           | 2B+D   | eoc <sub>i6</sub> | eoc <sub>i7</sub> | eoc <sub>i8</sub> | 1          | crc <sub>11</sub> | crc <sub>12</sub> |
| 2,3,                |                     |              |        |                   |                   |                   |            |                   |                   |

LT-to-NT direction

-NT-to LT direction

"1" = reserve = reserve bit for future standard; set = 1

eoc = embedded operations channel

a = address bit

- dm = data/message indicator
- i = information (data/message)

act = activation bit ps1, ps2 = power status bits ntm = Nt1 in test mode bit crc = cyclic redundancy check covers 2B+D & M4 febe = far end block error bit

2B1Q superframe technique & overhead bit assignments (8x1.5 ms "basic frames" = 12 ms superframe)

# **Embedded Operation Channel (EOC)**

24 bits per superframe are allocated to an embedded operation channel supporting operation communication between network and NT. Two EOC frames of 12 bits are contained within a superframe:

| <b>a</b> <sub>1</sub> – <b>a</b> <sub>3</sub> | dm                    | i <sub>i</sub> — i <sub>8</sub> |       | (o) O<br>(d) D | rigin.<br>est. | Message                |  |  |
|-----------------------------------------------|-----------------------|---------------------------------|-------|----------------|----------------|------------------------|--|--|
| Address<br>Field                              | Data/Msg<br>Indicator | Info                            | Field | Field LT       |                |                        |  |  |
| 000                                           |                       |                                 |       |                |                | NT Address             |  |  |
| 111                                           |                       | 1                               |       |                |                | Broadcast              |  |  |
|                                               | 1                     | 1                               |       |                |                | Message                |  |  |
|                                               | 0                     |                                 |       |                |                | Data                   |  |  |
|                                               |                       | 0,101                           | 0000  | 0              | d              | Operate 2B+D Loopback  |  |  |
|                                               |                       | Ø101                            | 0001  | 0              | d              | Operate B1 Loopback    |  |  |
|                                               |                       | 0101                            | 0010  | 0              | d              | Operate B2 Loopback    |  |  |
|                                               |                       | 0101                            | 0011  | 0              | d              | Request Corrupted CRC  |  |  |
|                                               |                       | 0101                            | 0100  | 0              | d              | Notify of Corrupted CR |  |  |
|                                               |                       | 1111                            | 1111  | 0              | d              | Return to Normal       |  |  |
|                                               |                       | 0000                            | 0000  | d/o            | o/d            | Hold State             |  |  |
|                                               |                       | 1010                            | 1010  | d              | 0              | Unable to Comply       |  |  |
|                                               |                       |                                 |       |                |                | Acknowledgement        |  |  |

# **Activation and Deactivation Procedures**

Activation occurs either by the LT or NT side. Deactivation starts always from the LT side.

## Activation from LT





#### **Activation from NT**

the following as on previous page

#### **Deactivation Procedure**



| Signal | Synch Word | Super Frame | 2B+D      | M         |
|--------|------------|-------------|-----------|-----------|
| TN     | +-3        | +-3         | +-3       | +-3       |
| SNO    | No Signal  | No Signal   | No Signal | No Signal |
| SN1    | Present    | Absent      | 1         | 1         |
| SN2    | Present    | Absent      | 1         | 1         |
| SN3    | Present    | Present     | 1         | Normal    |
| SN3T   | Present    | Present     | Normal    | Normal    |
| TL     | +-3        | +-3         | +-3       | +-3       |
| SL0    | No Signal  | No Signal   | No Signal | No Signal |
| SL1    | Present    | Absent      | 1         | 1         |
| SL2    | Present    | Present     | 0         | Normal    |
| SL3T   | Present    | Present     | Normal    | Normal    |

- \* TL/TN alternate +-3 for 10-kHz tone
- \* SN<sub>x</sub> signal from NT to LT
- \* SL<sub>x</sub> signal from LT to NT

# The IOM-2 Interface

#### The Frame Structure of IOM-2



#### Multiplexed Frame Structure of the IOM-2 Interface (shown for 2.048 kbit/s)



### The IOM-2 Interface Monitor Channel

The monitor channel of the IOM-2 interface is designed for safe message oriented data transfer including rate adaption and synchronization features. The dedicated transfer procedure enables the link of several bytes to multi-byte message. For easy identification of the messages, each one starts with a four bit field indicating the structure of the following data. For ISDN basic access layer-1 maintenance four identifier codes are used within the IEC-Q:

| MON-0 | 0 0 0 0 | for U interface eoc message                                                                    |
|-------|---------|------------------------------------------------------------------------------------------------|
| MON-1 | 0001    | for S/T interface S1/Q messages and one part of<br>U interface single maintenance bits.        |
| MON-2 | 0010    | for the second part of U interface single maintenance bits<br>and the S/T interface S2 channel |
| MON-8 | 1000    | for local messages                                                                             |

if unspecified codes are passed, their receipt is acknowledged, but disregarded by the chip.

#### EOC Messages on the IOM-2 Interface

The twelve bit eoc messages are transferred over the IOM interface in two monitor channel bytes according to the following structure (cf. T1 U interface specification)

#### MON-0



This monitor message is transferred either only once and then handled autonomously by the device.

Code repetition is performed within the chip by EOC processor.

Only one pending command is allowed, i.e. one may pass (valid for MON- and EOC- channel).

#### Single Maintenance Bits of the U Interface on the IOM Interface

There are twelve single maintenance bits defined. Some of them have a relationship to the S/T interface such as NTM or FEBE, others are assigned to the layer-1 activation procedure. As a consequence, some are transferred with the identifier "0001" to link U and S/T interfaces maintenance functions, others are transferred separately:

#### MON-1

|   |   |   |   |   |   |   |   | 1 |   |   |   |   |   |   |   |   |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |   | S | s | s | s | 1 | - | - | m |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |

s: S1/Q code, m: NTM polarity

| S1/Q code |      | NT   | LT |     |  |
|-----------|------|------|----|-----|--|
|           | d    | u    | d  | u   |  |
| 1 1 1 1   |      | NORM | _  | _   |  |
| 0 0 0 1   | _    | ST   | -  | · _ |  |
| 0 0 1 0   | STP  | _    | -  | _   |  |
| 0 1 0 0   | FEBE | _    | -  |     |  |
| 1000      | NEBE | -    | -  | _   |  |
| 1 1 0 0   | FNBE | -    | -  | _   |  |

d: Downstream (LT-TE), u: Upstream (TE-LT)

ST: Self test

STP: Self test pass

FEBE, NEBE, FNBE indicates block errors

#### MON-2

| 0 | 1 | 1 | 0 | M <sub>41</sub><br>M <sub>61</sub> | M <sub>51</sub><br>M <sub>42</sub> | M <sub>52</sub><br>M <sub>43</sub> | M <sub>62</sub><br>M₄₄ | M <sub>45</sub><br>M <sub>47</sub> | M <sub>46</sub><br>M <sub>42</sub> |
|---|---|---|---|------------------------------------|------------------------------------|------------------------------------|------------------------|------------------------------------|------------------------------------|
|   | • |   | U | 10161                              | 142                                | 10143                              | 11144                  | WI47                               | 1142                               |

Remaining M-bits (M<sub>xv</sub>: M<sub>x</sub> in frame y)

#### Local Messages

1000 ra00



b: Local command

Possible local commands are:

- RBEF: Read block error counter far end
- RBEN: Read block error counter near end
- RDi: Relay driver i activated
- RECC: Read echo canceler coefficients
- RID: Read identification
- RPFC: Read power feed current value

The IEC-Q supplies the desired information in a two byte message with local address.

## The IOM-2 Interface C/I Channel

#### C/I Channel Codes

| Code | NT-N | lode | LT-Mode |      |  |
|------|------|------|---------|------|--|
|      | IN   | OUT  | IN      | OUT  |  |
| 0000 | ТІМ  | DR   | DR      |      |  |
| 0001 | RES  | _    | RES     | DEAC |  |
| 0010 | -    | FJ   | -       | FJ   |  |
| 0011 | -    |      | LTD     | HI   |  |
| 0100 | SI1  | EI1  | RES1    | EI1  |  |
| 0101 | SSP  |      | SSP     | El2  |  |
| 0110 | DT   |      | DT      | INT  |  |
| 0111 | _    | PU   | _       | LSAI |  |
| 1000 | AR   | AR   | AR      | AR   |  |
| 1001 | _    |      | _       | ARM  |  |
| 1010 | ARL  | ARL  | ARL     | -    |  |
| 1011 | _    | _    | —       | -    |  |
| 1100 | AI   | AI   | _       | AI   |  |
| 1101 | _    |      | _       | -    |  |
| 1110 | _    | AIL  | _       | _    |  |
| 1111 | DI   | DC   | DC      | DI   |  |

AIL Activation Indication Local Loop HL **High Impedance** AI Activation Indication (Set by Pin PFOFF) AR **Activation Request** INT Interupt (Set by Power Controler) ARL **Activation Request Local Loop** LT Disable ARM Activation Request Maintenance Bits LTD DC **Deactivation Confirmation** (Control of Pin DISS) DR **Deactivation Request** Line System Activation Indication LSAI DEAC Deactivation Accepted RES Circuit Reset DI **Deactivation Indication** RES1 **Receiver Reset** DT Test Mode (Data Through) PU Power Up SSP EI1 Error Indication 1 Test Mode (Error on U) (Send Single Pulses) El2 Error Indication 2 TIM Timing Required (Error on S/T)

# Application

Different hardware configurations as well as different operating modes of the device are selected to cope with different system requirements.

# NT1 Mode

T1 S/T and U interface procedure specification by SBCX and IEC-Q



# NT2 Mode

Using the ISAC-S together with the IEC-Q it is possible to handle all maintenance functions at the  $\mu$ C. The S1/Q bits are accessed directly in the specific ISAC<sup>TM</sup>-S register, the U interface maintenance data are transferred via monitor channel to the  $\mu$ C. In this configuration, the IEC-Q can be programmed either in automode or in transparent mode.



# NT Mode, Handling the Complete S Channel

The SBCX is used to get access to the S channel. Since both SBCX and IEC-Q need a monitor channel for transfer of maintenance information to the ICC, a data clock of 1.536 MHz is required for the IOM interface (TE mode of IEC-Q). The SBCX occupies the monitor channel of the second IOM interface channel and runs in the transparent mode.



#### LT Line Termination in Public or Private Exchange or NT-PBX



The EPIC performs the control of voice, data and signaling for up to eight subscribers on digital line boards with one IOM-2 interface. Since every IEC-Q needs a monitor channel transfering maintenance information to the  $\mu$ P and a data-channel, a time-slot procedure with variable data clock up to 6.176 MHz is required. Each IEC-Q is assigned to one time and runs either in the auto-mode or in the transparent-mode.

Using the IDEC, Handling the D-Channel Protocol for up to Four Subscriber Lines.

