SIEMENS

Memory Time Switch CMOS (MTSC)

PEB 2045 PEF 2045

Preliminary Data

CMOS IC

Туре	Ordering Code	Package
PEB 2045 P	Q67100-H8322	P-DIP-40
PEB 2045 C	Q67100-H8323	C-DIP-40
PEB 2045 N	Q67100-H8602	PL-CC-44 (SMD)
PEF 2045 P	Q67100-H6056	P-DIP-40
PEF 2045 C	Q67100-H6054	C-DIP-40
PEF 2045 N	Q67100-H6055	PL-CC-40 (SMD)

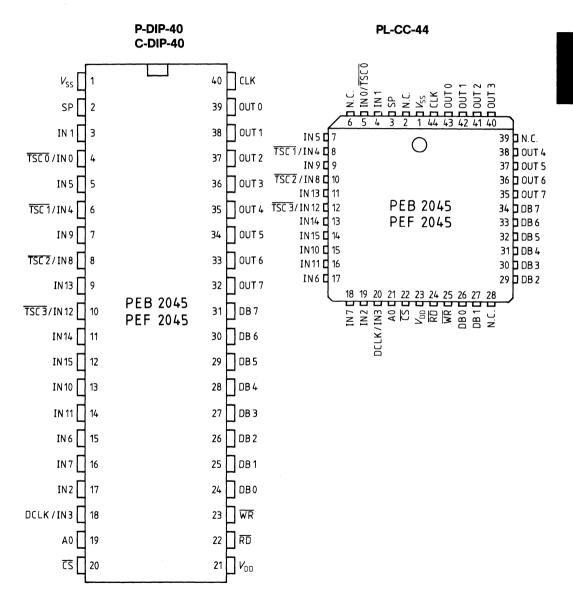
The Siemens memory time switch is a monolithic CMOS circuit connecting any of 512 incoming PCM channels to any of 256 outgoing PCM channels. The on-chip connection memory is accessed via the 8 bit μ P interface.

The components are fabricated using the advanced CMOS technology from Siemens and is mounted in a C-DIP-40, P-DIP-40 or a PL-CC-44 package. Inputs and outputs are TTL-compatible.

The PEB 2045 works with either a 8192 kHz clock or a 4096 kHz clock. Henceforth, the respective clock periods are referred to as t_{CP4} and t_{CP4} .

The bits of a time slot are numbered 0 through 7. Bit 0 of a time slot is the first bit to be received or transmitted by the MTSC, bit 7 the last.

The components PEB 2045 and PEF 2045 are functionally identical. The difference between the two types lies in the temperature range. The PEB 2045 operates in the temperature range 0 to 70° C, the PEF 2045 in the range -40 to $+85^{\circ}$ C.


Features

- Time/space switch for 2048, 4096 or 8192 kbit/s PCM systems
- Switching of up to 512 incoming PCM channels to up to 256 outgoing PCM channels
- 16 input and 8 output PCM lines
- Different kinds of modes (2048, 4096, 8192 kbit/sec or mixed mode)
- Configurable for primary access and standard applications
- Programmable clock shift with half clock step resolution for input and output in primary access configuration
- Configurable for a 4096 and 8192 kHz device clock
- Tristate function for further expansion and tandem operation
- Tristate control signals for external drivers in primary access configuration
- 2048 kHz clock output in primary access configuration
- Space switch mode
- 8 bit μP interface
- Single +5 V power supply
- Advanced low power CMOS technology
- Pin and software compatible to the PEB 2040

PEB 2045 PEF 2045

Pin Configurations

(top view)

P-DIP Pin No.	PL-CC Pin No.	Symbol	Input (I) Output (O)	Function
1	1	V _{ss}	1	Ground (OV)
2	3	SP	1	Synchronization Pulse: The PEx 2045 is syn- chronized relative to the PCM system via this line.
3 5 7 9 11 12 13 14 15 16 17	4 7 9 11 13 14 15 16 17 18 19	IN1 IN5 IN9 IN13 IN14 IN15 IN10 IN11 IN6 IN7 IN2		PCM Input Ports: Serial data is received at these lines at standard TTL levels.
4 6 8 10	5 8 10 12	IN0/TSC0 IN4/TSC1 IN8/TSC2 IN12/TSC3	I/O I/O I/O I	PCM Input Port / Tristate Control: In standard configuration these pins are used as input lines, in primary access configuration they supply control signals for external devices.
18	20	IN3/DCLK	1/0	PCM Input Port / Data Clock: In standard con- figuration IN3 is the PCM input line 3, in primary access configuration it provides a 2048 kHz data clock for the synchronous interface.
19	21	AO	1	Address 0: When high, the indirect register access mechanism is enabled. If A0 is logical 0 teh mode and status registers can be written to and read respectively.
20	22	CS	I	Chip Select: A low level selects the PEx 2045 for a register access operation.
21	23	V _{DD}	I	Supply Voltage: $5 V \pm 5\%$.
22	24	RD	I	Read: This signal indicates a read operation and is internally sampled only if \overline{CS} is active. The MTSC puts data from the selected internal register on the data bus with the falling edge of \overline{RD} . \overline{RD} is active low.

Pin Definition and Functions

P-DIP Pin No.	PL-CC Pin No.	Symbol	Input (I) Output (O)	Function
23	25	WR	I	Write: This signal initiates a write operation. The WR input is internally sampled only if \overline{CS} is active. In this case the MTSC loads an internal register with data from the data bus at the rising edge of WR. WR is active low.
24 25 26 27 28 29 30 31	26 27 29 30 31 32 33 34	DB0 DB1 DB2 DB3 DB4 DB5 DB6 DB7	I/O I/O I/O I/O I/O I/O I/O	Data Bus: The data bus is used for communication between the MTSC and a processor.
32 33 34 35 36 37 38 39	35 36 37 38 40 41 42 43	OUT7 OUT6 OUT5 OUT4 OUT3 OUT2 OUT1 OUT0	0 0 0 0 0 0 0 0 0	PCM Output Port: Serial data is sent by these lines at standard CMOS or TTL levels. These pins can be tristated.
40	44	CLK	1	Clock: 4096 or 8192 kHz device clock

Pin Definition and Functions (cont'd)

Figure 1 Functional Symbol for the Standard Configuration

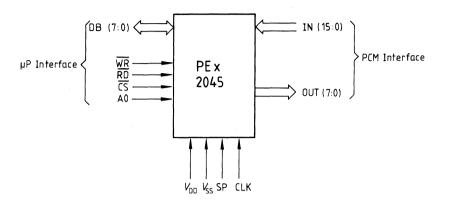
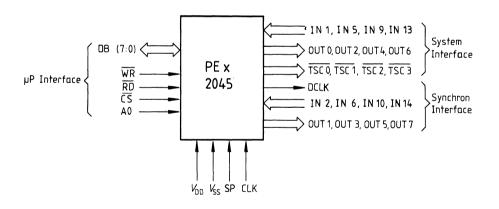
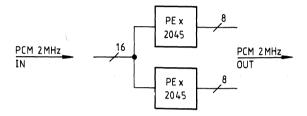



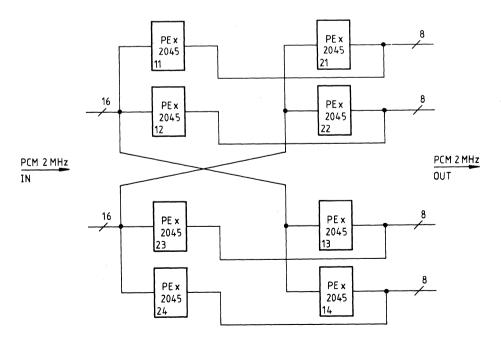
Figure 2 Functional Symbol Primary Access Configuration



System Integration

The main application fields for the PEx 2045 are in switches and primary access units. **Figure 3** shows a non-blocking switch for 512 input and 512 output channels using only two devices. **Figure 4** shows how eight devices can be arranged to form a non-blocking 1024 channel switch.

Figure 3


Memory Time Switch 16/16 for a Non-blocking 512-Channel Switch

This is possible due to the tristate capability of the PEx 2045.

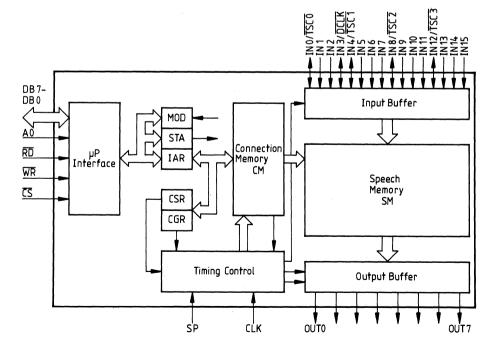
Figure 4

Memory Time Switch 32/32 for a Non-blocking 1024-Channel Switch

Functional Description

The PEx 2045 is a memory time switch device. It can connect any of 512 PCM input channels to any of 256 output channels.

The input information of a complete frame is stored in the on-chip 4 kbit speech memory SM. (**See figure 5**). The incoming 512 channels of 8 bits each are written in sequence into fixed positions in the SM. This is controlled by the input counter in the timing control block with a 8 kHz repetition rate.


For outputting, the connection memory (CM) is read in sequence. Each location in CM points to a location in the speech memory. The byte in this speech memory location is read into the current output time slot. The read access of the CM is controlled by the output counter which also resides in the timing control block.

Hence the CM needs to be programmed beforehand for the desired connection. The CM address corresponds to one particular output time slot and line number. The contents of this CM address points to a particular input time slot and line number (now resident in the SM).

The PEx 2045 works in standard configuration for usual switching applications, and in the primary access configuration where it realizes, together with the PEB 2035 (ACFA) and the PEB 2235 (IPAT), the system interface for up to four primary multiplex address lines.

Figure 5

Block Diagram of the PEx 2045

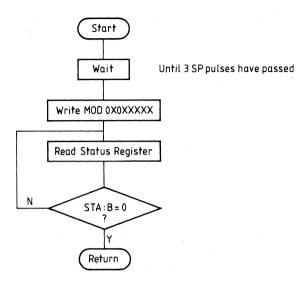
Operational Description

Power Up

Upon power up the PEx 2045 is set to its initial state. The mode and configuration register bits are all set to logical 1, the clock shift register bits to logical 0. The status register **B**-bit is undefined, the **Z**-bit contains logical 0, the **R**-bit is undefined.

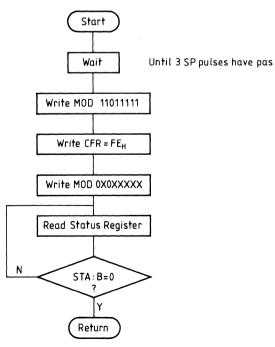
This state is also reached by pulling the \overline{WR} and \overline{RD} signals to logical 0 at the same time, (software reset). For the software reset the state of \overline{CS} is of no significance.

Initialization Procedure


After power up a few internal signals and clocks need to be initialized. This is done with the initialization sequence. To give all signals and clocks a defined value the MTSC must encounter three falling and two rising edges of the SP signal. The resulting SP pulses may be of any length allowed in normal operation, the time interval between the two SP pulses may be of any length down to 250 nsec.

With all signals being defined, the CM needs to be reset. To do that a logical 0 is written into **MOD:RC. STA:B** is set. The resulting CM reset is finished after at most 250 μ sec and is indicated by the status register **B**-bit being logical 0. Changing the pulse shaping factor N during CM reset may result in a CM reset time longer than 250 μ sec.

To prepare the PEx 2045 for programming the CM, the **RI**- bit in the mode register must be reset. Note that one mode register access can serve to reset both **RC** and **RI** bits as well as configurating to chip (i.e. selecting operating mode etc.).


Figure 6

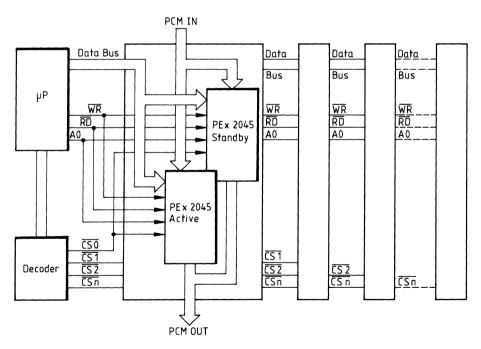
Initializing the PEx 2045 for a 8192-kHz-Device Clock

Figure 7

Initializing the PEx 2045 for a 4096-kHz-Device Clock

Siemens Components, Inc.

Operation with a 4096-kHz-Device Clock


In order for the MTSC to operate with a 4096-kHz-device clock the **CPS**-bit in the **CFR** register needs to be reset. This has to be done before the CM reset and needs up to 1.8 μ sec. Please keep in mind, **MOD:RI** has to be reset prior to performing an indirect register access. For a flow chart of this process refer to **figure 7**.

Standby Mode

With **MOD:SB** being logical 1 the PEx 2045 works as a backup device in redundant systems. It can be accessed via the μ P interface and works internally like an active device. However, the outputs are high impedance. If the **SB**-bit is reset the outputs are switched to low impedance for the programmed active channels and this MTSC can take over from another device which has been recognized as being faulty. **See figure 8.**

Figure 8

Device Setup in Redundant Systems

Detailed Register Description

The following registers may be accessed:

Table 1

Addressing the Direct Registers

Address A0	Write Operation	Read Operation		
0	MOD	STA		
1	IAR	IAR		

The chapters in this section cover the registers in detail.

Mode Register (MOD)

Access: write on address 0

DB 7							DB 0
RC	TE	RI	SB	MI1	MIO	MO1	MO0

Value after power up: FF_H

- RC: Reset Connection memory; writing a zero to this bit causes the complete connection memory to be overwritten with 200_{H} (tristate). During this time **STA:B** is set. The maximum time for resetting the connection memory is $250 \,\mu$ s.
- TE: Tristate Enable; this bit determines which tristating scheme is activated:
 - TE = 1: If the speech memory address written into the connection memory is S8 S0 = 0, the output channel is tristated.
 - TE = 0: The S9 bit written into the connection memory is interpreted as a validity bit: S9 = 0 enables the programmed connection, S9 = 1 tristates the output.
 - Note: If TE = 1, time slot 0 of the logical input line 0 cannot be used for switching.
- **RI: R**eset Indirect access mechanism; setting this bit resets the indirect access mechanism. RI has to be cleared before writing/reading IAR after reset.
- **SB:** Stand By; by selecting SB = 1 all outputs are tristated The connection memory works normally. The PEx 2045 can be activated immediately by resetting SB.

MI1/0:

MO1/0: Input/Output Operation Mode; these bits define MO1/0 the bit rate of the input and output lines. The bit rates are given in **table 2**, the corresponding pin functions in **table 3** (standard configuration) and **table 4** (primary multiplex access configuration).

Siemens Components, Inc.

MI1	MIO	MO1	MO1 MO0 Input Mode Output				
0	0	0	0	16x2	Mbit/s	8x2	Mbit/s**
0	0	0	1	16x2	Mbit/s	2x8	Mbit/s
0	0	1	0	16x2	Mbit/s	4x2/1x8	Mbit/s
0	1	0	0	4x8	Mbit/s	8x2	Mbit/s
0	1	0	1	4x8	Mbit/s	2x8	Mbit/s
0	1	1	0	4x8	Mbit/s	4x2/1x8	Mbit/s
1	0	0	0	2x8/8x2	Mbit/s	8x2	Mbit/s
1	0	0	1	2x8/8x2	Mbit/s	2x8	Mbit/s
1	0	1	0	2x8/8x2	Mbit/s	4x2/1x8	Mbit/s**
0	0	1	1	8x4	Mbit/s	4x4	Mbit/s
0	1	1	1	4x8	Mbit/s	4x4	Mbit/s
1	1	1	1	4x4/8x2	Mbit/s	4x2/2x4	Mbit/s**
1	0	1	1	8x4	Mbit/s	2x8	Mbit/s
1	1	0	1	16x8	Mbit/s	2x8	Mbit/s*
1	1	0	0		L	inused	
1	1	1	0		Ĺ	inused	

 Table 2

 Input/Output Operating Modes

* for space switch application only

** can also be used for primary access configuration

In the mixed modes the first bit rate refers to the odd line numbers, the second one to the even line numbers.

Siemens Components, Inc.

Table 3 Input and Output Pin Arrangement for the Standard Configuration

Pin P-DIP	No. PL-CC	16x8 Mbit/s 16x2 Mbit/s	4x8 Mbit/s	8x2 + 2x8 Mbit/s	8x4 Mbit/s	8x2 + 4x4 Mbit/s
3	4	IN 1		· · · · ·		`
4	5	IN O		IN O		IN O
5	7	IN 5				
6	8	IN 4		IN 4		IN 4
7	9	IN 9			IN 1	IN 1
8	10	IN 8		IN 8	IN O	IN 8
9	11	IN 13	IN 1	IN 1	IN 5	IN 5
10	12	IN 12	IN O	IN 12	IN 4	IN 12
11	13	IN 14	IN 2	IN 14	IN 6	IN 14
12	14	IN 15	IN 3	IN 3	IN 7	IN 7
13	15	IN 10		IN 10	IN 2	IN 10
14	16	IN 11			IN 3	IN 3
15	17	IN 6		IN 6		IN 6
16	18	IN 7				
17	19	IN 2		IN 2		IN 2
18	20	IN 3				

Input Pin Arrangement

Note: The input line numbers shown are the logical line numbers to be used for programming the connection memory. In the case of 16 input lines the logical line numbers are identical to the pin names.

Output Pin Arrangement

Pin P-DIP	No. PL-CC	8x2 Mbit/s	2x8 Mbit/s	4x2 + 1x8 Mbit/s	3	4x4 Mbit/s	4x2+2x Mbit/s	4
32	35	OUT 7		OUT 7			OUT 7	
33	36	OUT 6						
34	37	OUT 5		OUT 5			OUT 5	
35	38	OUT 4						
36	40	OUT 3		OUT 3		OUT 3	OUT 3	
37	41	OUT 2				OUT 2		OUT 2
38	42	OUT 1	OUT 1	OUT 1		OUT 1	OUT 1	
39	43	OUT 0	OUT 0		OUT 0	OUT 0		OUT 1

Note: The logical output line numbers shown above are identical to the pin names.

	Pin	No.	System	Interfac	e Mode	
Pin-name	P-DIP	PL-CC	2 MHz	4 MHz	8 MHz	
TSCO TSC1 TSC2 TSC3	4 6 8 10	5 8 10 12	TSC0 TSC1 TSC2 TSC3	TSC0 TSC1	TSC0	System interface tristate control signals, clock shift programmable
OUT 0 OUT 2 OUT 4 OUT 6	39 37 35 33	43 41 38 36	OUT 0 OUT 1 OUT 2 OUT 3	OUT 0 OUT 1	OUT 0	System interface outputs clock shift programmable
IN 13 IN 9 IN 5 IN 1	9 7 5 3	11 9 7 4	IN 3 IN 2 IN 1 IN 0	IN 1 IN 0	IN 0	System interface inputs, clock shift programmable
OUT 1 OUT 3 OUT 5 OUT 7	38 36 34 32	42 40 37 35	OUT 0 OUT 1 OUT 2 OUT 3	OUT 0 OUT 1 OUT 2 OUT 3	OUT 0 OUT 1 OUT 2 OUT 3	Synchronous 2 MHz interface outputs
IN 14 IN 10 IN 6 IN 2	11 13 15 17	13 15 17 19	IN 3 IN 2 IN 1 IN 0	IN 3 IN 2 IN 1 IN 0	IN 3 IN 2 IN 1 IN 0	Synchronous 2 MHz interface inputs
	Mode		0000	1111	1010	MI1, MI0, MO1, MO0

Table 4 Input, Output and Tristate Pin Arrangement for the Primary Access Configuration

Note: The input, output and tristate control line numbers shown in the center columns of this table are logical line numbers. The corresponding pin names are listed in the left most column.

Status Register (STA)

Access: read at address 0

DB 7							DB 0
В	Z	R	0	0	0	0	0

B Busy: the chip is busy resetting the connection memory (B = 1) B is undefined after power up and logical 0 after the device initialization.

Note: The maximum time for resetting the connection memory is $250 \ \mu s$.

Z incomplete instruction; a three byte indirect instruction is not completed (Z = 1). Z is 0 after power up.

Note: Z is reset and the indirect access is cancelled by setting MOD:RI or resetting MOD:RC

R initialization Request. The connection memory has to be reset due to loss of data (R = 1). The R bit is set after power failure or inappropriate clocking and reset when the connection memory reset is finished. R is undefined after power up and logical 0 after the device initialization.

Indirect Access Register (IAR)

(Read or Write Operation with Address A0 = 1)

An indirect access is performed by reading/writing three consecutive bytes (first byte = control byte, second byte = data byte, third byte = address byte) to/from IAR. The structure is shown in **table 5**.

Table 5

The 3 Bytes of the Indirect Access

Bit 7							Bit 0	
0	0	K1	K0	0	0	C1	C0	Control Byte
D7	D6	D5	D4	D3	D2	D1	D0	Data Byte
IA7	IA6	IA5	IA4	IA3	IA2	IA1	IA0	Address Byte

The control byte bits K1, K0, C1 and C0 together with the address byte determine the type of access being performed according to **table 6**.

Table 6

Encoding the Different Types of Indirect Accesses

K1	КО	C1	C0	Address Byte	Type of Acces
0	0	D9	D8	CM-Address	Read CM
1	0	D9	D8	CM-Address	Write CM
0	1	D9	D8	CM-Address	Write CM
1	1	0	0	FE _H	Write CFR
1	1	0	1	FE _H	Read CFR
1	1	0	0	FF _H	Write CSR
1	1	0	1	FF _H	Read CSR

Connection Memory Access

For a connection memory access the control byte bits C1 and C0 contain the data bits D9 and D8, respectively. D9 is the validity bit which together with D8 and the data byte D7-D0 is written to the CM address IA7-IA0.

The function of the validity bit is controlled by **STA:TE**. D8-D0 and IA7-IA0 contain the information for the logical line and time-slot numbers of the programmed connection, D8-D0 for the inputs, IA7-IA0 for the outputs. **Tables 7 through 11** show the programming of these bits for the different configurations and modes.

Standard Configuration

Table 7

Time Slot and Line Programming for Standard Configuration

Standard Configuration, all Modes Except, Space Switch Mode

2 Mbit/s input lines	Bit Bit Bit	D3 D8 D9	to to	D0 D4	Logical line number Time-slot number Valididy bit
4 Mbit/s input lines	Bit Bit Bit	D2 D8 D9	to to	D0 D3	Logical line number Time-slot number Validity bit
8 Mbit/s input lines	Bit Bit Bit	D1 D8 D9	to to	D0 D2	Logical line number Time-slot number Validity bit
2 Mbit/s output lines	Bit Bit	IA2 IA7	to to	IA0 IA0	Line number Time-slot number
4 Mbit/s output lines	Bit Bit	IA1 IA7	to to	IAO IA2	Line number Time-slot number
8 Mbit/s output lines	Bit Bit	IAO IA7	to	IA1	Line number time-slot number

Space Switch Mode

Table 8

Time Slot and Line Programming for Space Switch Mode

Space-Switch-Mode	(MI1	(MI1 = 1, MI0 = 1; MO1 = 0, MO0 = 1)						
8 Mbit/s input lines	Bit Bit Bit	D0 D4 D9	to to	D3 D8	Logical line number. The lower 5 bits of the time-slot number Validity bit			
8 Mbit/s output lines	Bit Bit	IA0 IA1	to	IA7	Logical line number Time-slot number			

N is fixed to 70. The selection of one specific input time slot is possible by writing the connection memory (CM) as shown below.

Table 9

Programming Input and Output Lines and Time Slots in Space Switch Mode

In CM address 00-3F: D8-D4 (SM addr.)	= TS0 - TS3 = TS32 - TS63
In CM address 40-7F: D8-D4 (SM addr.) In CM address 80-BF: D8-D4 (SM addr.)	= TS6 - TS95
In CM address C0-FF: D8-D4 (SM addr.)	= TS96 – TS127

In space switch mode the leading edge of the SP pulse must be applied with the first bit of time slot 125. The input and output time-slot number must match.

Primary Access Configuration

Table 10

Time Slot and Line Programming for the Primary Access Configuration

Bit	D1	to	D0	Interface select in
		to		line number
Bit	D8	to	D4	Time-slot number
Bit	D9			Validity bit
Bit	D1	to	D0	Fixed to 01 (system interface)
Bit	D2			Line numbers
Bit	D8	to	D3	Time-slot number
Bit	D9			Validity bit
Dit	D1	to	D0	Fixed to 01 (system interface)
				Line number
		10	D2	
ыт	D9			Validity bit
Bit	IA0			Interface select out
Bit	IA2	to	IA1	Line number
Bit	IA7	to	IA3	Time-slot number
Bit	IAO			Fixed to 0 (system interface)
				Line number
		to	142	Time-slot number
	IA /		172	
Bit	IA0			Fixed to 0 (system interface)
Bit	IA7	to	IA1	Time-slot number
	Bit Bit Bit Bit Bit Bit Bit Bit Bit Bit	BitD3BitD8BitD9BitD1BitD2BitD9BitD9BitD9BitD9BitD9BitIA0BitIA2BitIA7BitIA0BitIA1BitIA7BitIA0BitIA1BitIA7BitIA0	BitD3toBitD8toBitD9toBitD1toBitD2BitD8toBitD9toBitD1toBitD9toBitD9toBitD1toBitD9toBitD1toBitD9toBitIA2toBitIA7toBitIA1BitIA7toBitIA7toBitIA0	BitD3toD2BitD8toD4BitD9D0BitD1toD0BitD2toD3BitD9D0BitD1toD0BitD8toD2BitD1toD0BitD8toD2BitD8toD2BitIA0IA1BitIA7toBitIA7toBitIA7toBitIA7toBitIA7toBitIA7toBitIA7BitIA7BitIA0

The interface select bits have to be programmed as shown in the following table:

Table 11 Interface Selection Bits

	System Interface	Synchronous 2 MHz Interface		
input lines	01	10		
output lines	0	1		

Configuration Register Access (CFR)

Access: read or write at indirect address FE_H

For a read access the bit 0 of the control byte must be set to logical 1 and for a write access to logical 0.

Value after power up or software reset: FF_H

DB 7							DB 0
1	1	1	1	1	1	CFS	CPS

- CPS.. Clock Period Select: device clock is set to 8192 kHz (logical 1) or 4096 kHz (logical 0)
- **CFS.. C**onFiguration Select: The PEx 2045 works in either the primary access configuration (logical 0) or in standard configuration (logical 1). Setting this bit to logical 1 resets the **CSR** to 00_H.

Clock Shift Register Access (CSR)

Access: read or write at indirect address FE_H

For a read access the bit 0 of the control byte has to be set to logical 1 and for a write access to logical 0.

The value after power up is 00_H

DB 7							DB 0
RS2	RS1	RS0	RRE	XS2	XS1	XS0	XFE

- **RS2..RS0..** Receive clock Shift, bits 2-0. The received data stream is shifted in bit period steps as shown in figure 9.
- **RRE...** Receive with Rising Edge. The data is sampled with the falling (RRE = 0) or rising edge (RRE = 1) of the data equivalent clock. (See figure 9).
- **XS0..XS2..** Transmit clock Shift, bits 2-0. The transmitted data stream is shifted as shown in figure 9.
- **XFE...** Transmit with Falling Edge; data is transmitted with the rising (XFE = 0) or falling edge (XFE = 1) of the **device** clock.

Data stream manipulation according to these register entries only affects the system interface and only in the primary access configuration. The frame structure can be moved relative to the SP slope by up to seven clock periods in half clock period steps. This register can hold non-zero values only for a **CFR:CFS** value of logical 0. **Figure 9** illustrates the clock shifting facility.

Identical non-zero entries for RS2-RS0 and XS2-XS0 as well as identical RRE and XFE generate an output time-slot structure which is 1 time slot late relative to the input time-slot structure.

Identical 000 entries RS2-R0 and XS2-XS0 as well as RRE and XFE being logical 0 cause the input and output frames to coincide in time.

Figure 9 **Clock Shifting** SP TS 0 CSR: 0000 XXXX TS0 Inputs XXXX 0010 TS 0 0100 XXXX TS 0 nterface 0110 XXXX TS 0 1000 XXXX TS0 1010 XXXX System TS 0 1100 XXXX TS 0 1111 XXXX TS O CSR: XXXX 0000 Outputs TS0 XXXX 1110 TS 0 XXXX 1100

Interface TS 0 XXXX 1010 TS 0 XXXX 1000 TS 0 0110 XXXX System TS 0 0100 XXXX TS 0 XXXX 0011

Siemens Components, Inc.

Absolute Maximum Ratings

Parameter	Symbol	Limit Values	Unit
Ambient temperature under bias PEB 2045	T _A	0 to 70	°C
Storage temperature PEB 2045	T _{stg}	-65 to 125	°C
Ambient temperature under bias PEF 2045	T _A	-40 to 85	°C
Storage temperature PEF 2045	T _{stg}	-65 to 125	°C
Voltage on any pin with respect to ground	Vs	-0.4 to $V_{\rm DD}$ +0.4	V

DC Characteristics

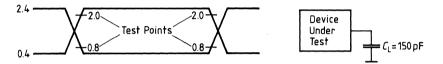
Ambient temperature under bias range; $V_{DD} = 5 \text{ V} \pm 5\%$, $V_{SS} = 0 \text{ V}$.

Parameter	Symbol	Symbol Limit Valu		Unit	Test Conditions
	_	min.	max.	ţ	
L-input voltage	V _{IL}	-0.4	0.8	V	
H-input voltage	V _{IH}	2.0	V _{DD} +0.4	V	
L-output voltage	V _{OL}		0.45	V	$I_{\rm OL} = 2 \text{ mA}$
H-output voltage H-output voltage	V _{он} V _{он}	2.4 0.5		V V	$I_{\rm OH} = -400 \ \mu {\rm A}$ $I_{\rm OH} = -100 \ \mu {\rm A}$
Operational power supply current	I _{CC}		10	mA	$V_{\rm DD} = 5 \text{ V},$ inputs at 0 V or $V_{\rm DD},$ no output loads
Input leakage current Output leakage current	I_{LI} I_{LO}		10	μΑ	$0V < V_{\rm IN} < V_{\rm DD} \text{ to } 0V$ $0V < V_{\rm OUT} < V_{\rm DD} \text{ to } 0V$

Capacitances

 $T_{\rm A} = 25 \,^{\circ}\text{C}, V_{\rm DD} = 5 \,\text{V} \pm 5\%, V_{\rm SS} = 0 \,\text{V}.$

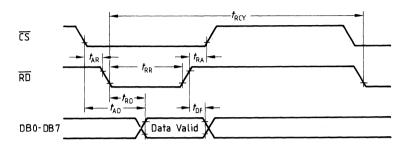
		L	Limit Values		
Parameter	Symbol	min.	max.	Unit	
Input capacitance	C _{IN}		10	pF	
I/O capacitance	C _{IO}		20	рF	
Output capacitance	C _{OUT}		15	pF	

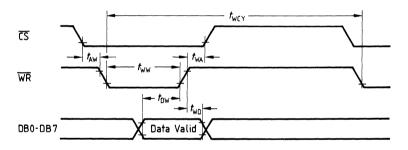

AC Characteristics

Ambient temperature under bias range, $V_{DD} = 5 \text{ V} \pm 5\%$

Inputs are driven at 2.4 V for a logical 1 and at 0.4 V for a logical 0. Timing measurements are made at 2.0 V for a logical 1 and at 0.8 V for a logical 0. The AC testing input/output waveforms are shown below.

Figure 10


I/O Waveform for AC Tests


μP Interface Timing

		Lir		
Parameter	Symbol	min.	max.	Unit
Address stable before RD	t _{AR}	0		ns
Address hold after RD	t _{RA}	0		ns
RD width	t _{RB}	90		ns
RD to data valid	t _{RD}		90	ns
Address stable to data valid	t _{AD}		90	ns
Data float after RD	t _{DF}	5	25	ns
Read cycle time	t _{RCY}	160		ns
Address stable before WR	t _{AW}	0		ns
Address hold time	t _{WA}	0		ns
WR width	t _{ww}	60		ns
Data setup time	t _{DW}	5		ns
Data hold time	t _{WD}	15		ns
Write cycle time	twcy	160		ns

Figure 11 µP Read Cycle

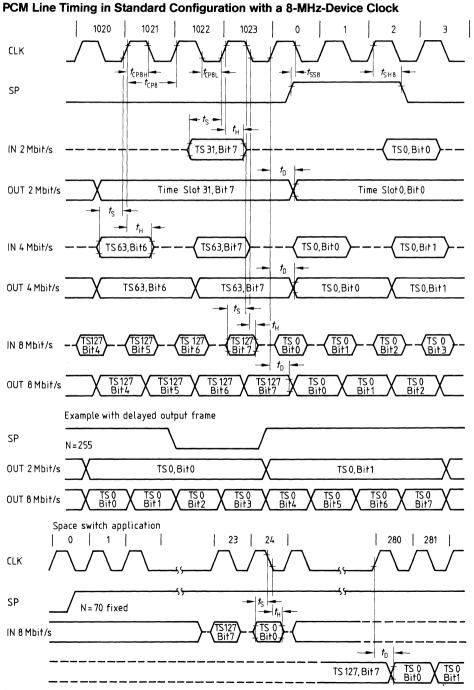
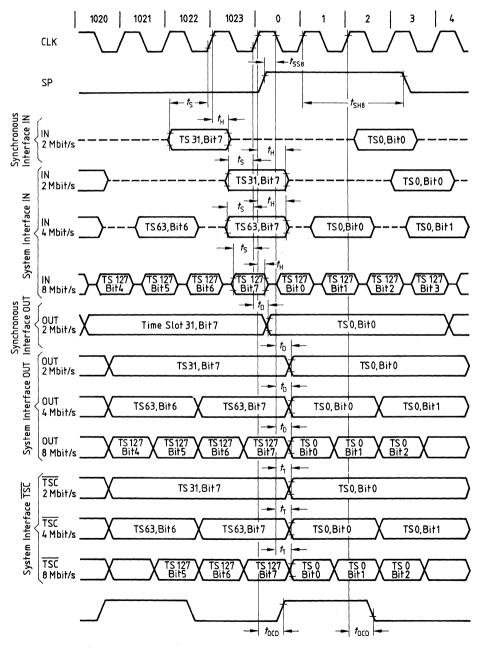
Figure 12 μ P Write Cycle

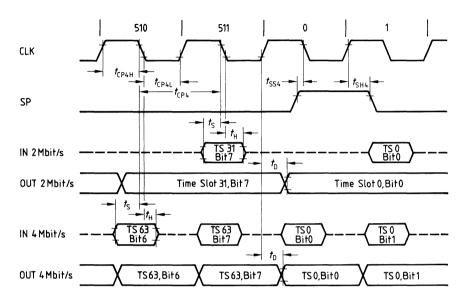
PCM Interface Timing

		Limit Values		
Parameter	Symbol	min.	max.	Unit
PCM input setup	ts	0		ns
PCM input hold	t _H	30		ns
PEB 2045 output delay	t _D		45	ns
PEF 2045 output delay	t _D		50	ns
PEB 2045 tristate delay	t _T		55	ns
PEF 2045 tristate delay	t _T		60	ns

Clock and Synchronization Timing

		Limit Values		
Parameter	Symbol	min.	max.	Unit
Clock period 8 MHz high	t _{CP8 н}	40		ns
Clock period 8 MHz low	t _{CP8 ι}	48		ns
Clock period 8 MHz	t _{CP8}	120		ns
Synchronization pulse setup 8 MHz	t _{SS8}	10	t _{CP8} -20	ns
Synchronization pulse delay 8 MHz	t _{SH8}	0	t _{CP8} -20	ns
Clock period 4 MHz high	t _{CP4.H}	90		ns
Clock period 4 MHz low	t _{CP4 L}	90		ns
Clock period 4 MHz	t _{CP4}	240		ns
Synchronization pulse setup 4 MHz	t _{SS4}	10	t _{CP4} -30	ns
Synchronization pulse delay 4 MHz	t _{SH4}	30	t _{CP4} -10	ns
Data clock delay	t _{DCD}		100	ns


Figure 13 PCM Line Timing in Standard Configuration with a 8-MHz-De

Siemens Components, Inc.

Figure 14

PCM Line Timing in Primary Access Configuration with a 8-MHz-Device Clock and a CSR Entry (00010001)

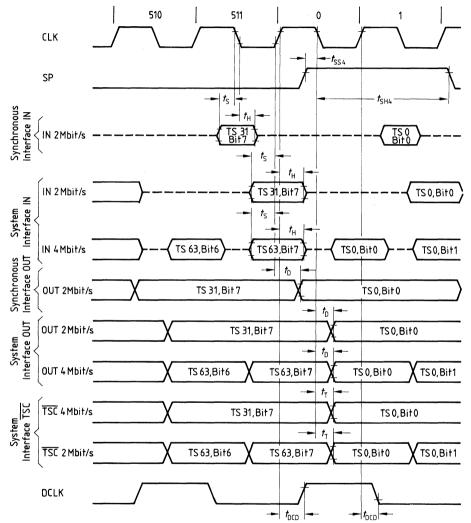


Figure 15 PCM Line Timing in Standard Configuration with a 4-MHz-Device Clock

Figure 16

PCM Line Timing in Primary Access Configuration with a 4-MHz-Device Clock and a CSR Entry (00010001)

Table 12

Busy Times

Operation	Max. Value	Unit
Indirect register access	900	ns
Connection memory reset	250	μs

Siemens Components, Inc.