OsmoCon 2017
Running a OsmoCom based commercial network
On-Waves ehf.

- Maritime GSM Service Provider
- Established in 2007, Headquartered in Reykjavik, Iceland
- Offices in Reykjavík and Paris
- Síminn hf., ("Iceland Telecom") is the majority owner (Nasdaq OMX Nordic: SIMINN)
- Vessels located in all continents of the world
- Serving multiple market segments
- On-Waves owns and operates end-to-end IP maritime GSM core network
- Bridge the gap between ocean and land and simultaneously enhance the life qualities of seafarers and their families and operational efficiency.
Market segments

- Cruise vessels
- Ferries
- Yachts
- Offshore
- Commercial
- Fishing vessels
OW product and services

- Prepaid GSM
- Roaming GSM
- Value Added Services
- Outbound „roaming“
Some of On-Waves vessels
GSM Network Overview
Small Form Factor

- Integrated BSC and BTS improves stability over VSAT
- Low power requirement -- POE
- Simple to configure and deploy
- Integrated GPS receiver
- Up to 12 active calls, plus SMS and 2.75G “EDGE” data
- Can limit max simultaneous calls as needed
- 8kb/s per call and 5Mb/month “idle state” usage.
Hotspot coverage

VSAT

CAT-5

On-Waves Access Unit

MAIN DECK PLAN
“Medium” Size Solution

KEY:
- Ethernet CAT5 Cabling
- Cellflex 1/4” Low-Loss Coax
- Asymmetric RF Splitter
- RF Combiner

- Max run length to furthest antenna is 100m
- Segments not to exceed 25m
- Antennas to be separated by 25m if in line-of-sight.
Passive DAS coverage
Cable Drawing
GPS Manager – Manages Service Availability

- Automated Platform disables GSM service when vessel approaches port and reactivates when departing port to comply with regulations
- If the vessel is within 12nm of shore (2nm for the EU), a required state of LOCKED is transmitted back to the BSC.
- When the vessel is beyond 12nm of shore, a required state of UNLOCKED is transmitted back to the BSC.
- If the GPS input is lost for more than 400 seconds, the BSC automatically LOCKS as a fail-safe to prevent the phones from attempting to obtain service in port.
- KVH and On-Waves has certified direct GPS input from KVH BDE – no additional equipment required.
VSAT challenges

- QoS – Virtually no support for QoS by the VSAT vendor
- Heavy use of Address/Port Translation
- Crazy firewalling
- Bandwidth – typical available bandwidth is 128kbit/s (for the entire vessel)
- RTT is way over 900ms
- Jitter is way over 200ms
- Packet Loss can easily go over 1%
- Non VSAT based systems: Inmarsat Fleet Broadband and Thuraya
On-Waves/OsmoCom project

- On-Waves involvement started in 2009 with implementation of the ip.access A interface over IP
- Contribution spreads over numerous projects: osmo-bsc, bsc-nat, osmo-gbproxy, osmo-stp, osmux, ASN.1/TCAP/MAP stack
- Average of 1 to 2 full time contributors per year
- 95% of the BSS software environment is Open Source
- No proprietary implementation
- Addition of new nodes to support non-standard features
On-Waves before OsmoCom
On-Waves before OsmoCom

- Circuit-based Ericsson GSM MSC
- Proprietary circuit combined BSC/BTS (aka Interwave BS+)
- Proprietary Signaling gateways
- Cisco routers for G.711/G723.1 transcoding
- Very static configuration: one vessel, one BSC, one E1 trunk, x voice circuits
- 90 kgs
- 80k EUR investment/vessel
Implementation of the ip.access A/IP Interface

- On-Waves migration to a softswitch MSC/VLR
- Use of the ip.access nanobts (On-Waves had also sourced the IPA circuit BSC)
- Implementation based on traces, no support from the BTS vendor
- A interface implemented using the SCCP-Lite protocol (proprietary but widely implemented)
- Implementation done in a few (2-3) months
Implementation of the ip.access A/IP Interface

- Limited scalability
- No support of IP Network/Port Address Translation
- SoftMSC limitation (number of connected BSCs)
- Non-standard SDP implementations by ip.access/Audiocodes
Development of BSC-NAT
BSC-NAT features

- One BSC from soft-MSC/VLR point of view
- Virtually supports hundreds/thousands of remote BSCs
- Implementation of MGCP over IPA protocol to support IP NAT
- BSC acts as RTP/MGCP proxy towards the BSC-NAT
- Support for multiple MSCs (still in development)
- Support for Location Update access-lists
- BSC Authentication (not extremely secure)
Support for control Interface

- Use of IPA A link to carry admin commands
- Implementation of SET/GET/TRAP paradigm
- Implementation of an external interface on osmo-bsc used to submit vessel GPS positions
- Used to lock/unlock TRX
OSMUX

- RTP is extremely inefficient (24 kbit/s IP bandwidth to carry a AMR@5.9 call)
- RTP is using multiple UDP ports
- No bandwidth efficiency improvement if multiple calls
- Support for cRTP is limited to serial/Frame-Relay links or depends on VSAT modem vendor
OSMUX

RTP FRAME (20ms payload)

<table>
<thead>
<tr>
<th>20 bytes</th>
<th>8 bytes</th>
<th>12 bytes</th>
<th>2 bytes</th>
<th>15 bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP</td>
<td>UDP</td>
<td>RTP HEADER</td>
<td>Payload Header</td>
<td>VOICE PAYLOAD</td>
</tr>
</tbody>
</table>

OSMUX FRAME (x ms payload)

<table>
<thead>
<tr>
<th>20 bytes</th>
<th>8 bytes</th>
<th>3 bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP</td>
<td>UDP</td>
<td>OSMUX</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VOICE PAYLOAD 1</td>
</tr>
</tbody>
</table>
OSMUX performances
Here comes data
Data issues

- Difficulties in replacing the Siminn-hosted SGSN (IREG, GRX IP issues, CDRs, ...)
- Need support for MAP to support inbound roaming
- Extremely verbose BSSGB protocol
Data Evolution 1

DATA EVOLUTION
Data Evolution 2
How an MSC project turns into ...

- Started a project to replace the On-Waves softswitch
- Implemented a complete TCAP/MAP/CAP stack in Smalltalk/Pharo
- Led to implementation of the SGSN-MAPPROXY, a production-grade HLR/AUC, a SMS Home Routing platform, ...
- Further info: https://github.com/moji-mobi
Thank you