Software Defined Radio hardware for Osmocom BTS
Software Defined Radio (SDR): "a sound-card for radio waves"

0 1 0 1 0 1

digital IQ samples

radio signal
Architecture

- **osmo-nitb/osmo-bsc**
 - A-bis/IP
 - L3+: signaling and above

- **osmo-bts-trx**
 - bursts
 - L1+L2: physical layer, data-link layer

- **osmo-trx**
 - raw IQ
 - L0 aka Lower L1: modulation/demodulation

- **UHD**
 - raw IQ
 - Software Defined Radio driver

- **Duplexer, PA, LNA, etc**
 - RF
 - Software Defined Radio
 - Radio front-end
Hitchhiker’s guide to SDR hardware

- **UmTRX**
 - Designed specifically for GSM
 - Has open-source hardware version

- **USRP B2x0**
 - Popular flexible SDR with USB interface

- **USRP1**
 - The first SDR used for GSM back in 2008 by OpenBTS project
 - No longer actively supported

- **USRP N2x0/X3x0**
 - High-end SDR with Ethernet interface

- **USRP Exxx**
 - Embedded SDR with Xilinx Zynq CPU (ARM+FPGA)

- **LimeSDR**
 - New inexpensive SDR with USB interface

- **XTRX**
 - Upcoming inexpensive SDR with miniPCIe/PCIe interface

- **No BladeRF support**
 - Should be capable, but no one has bothered to add support = volunteers welcome!

- **No HackRF support**
 - Because it's half-duplex

-most popular-
Parameters important for GSM (1/2)

• Clock accuracy
 - 0.05 ppm / 0.1 ppm requirement for macro/picocells
 - 0.2 ppm - 0.4 ppm is ok for lab testing
 - 1-2 ppm clocks in most SDRs (USRP, LimeSDR, BladeRF, etc)
 • Requires external clock source or GPSDO or regular calibration
 - UmTRX/XTRX are the only popular SDR I know of with 0.1 ppm clock and built in GPSDO

• Clock rate
 - GSM symbol clock rate is 13/48 MHz
 - Integer multiples are recommended – fractional resampling is CPU intensive
 - USRP1 (64MHz) and USRP N (50MHz) clocks are not integer multiples
 - UmTRX clock is integer multiple (26 MHz)
 - USRP B2x0, X3x0, LimeSDR, XTRX have flexible clock and are configured for an integer multiple
Parameters important for GSM (2/2)

• Interface
 - USB (USRP B2x0, LimeSDR)
 • convenient as a portable development setup, but has variable latency and is not very stable in long term deployments.
 - Ethernet (UmTRX, USRP N2x0, USRP X3x0)
 • stable in long running applications, fixed latency
 - PCIe (XTRX)
 • stable in long running applications, almost no latency

• Output RF power
 - ≤ 10dBm (USRP B2x0, E3x0, LimeSDR)
 • few meters of coverage
 - ≥ 20dBm (UmTRX, USRP N2x0, X3x0)
 • 100m+ of coverage
Radio Frontend

- **Power Amplifier (PA)**
 - Amplifies transmitted signal
- **Low-Noise Amplifier (LNA)**
 - Amplifies received signal
- **Duplexer**
 - Splits transmitted signal from received signal
 - Filters out out-of-band spurs
UmSITE base station inside
Fairwaves UmSITE
A production BTS based on SDR and osmo-bts
Don’t run PA without filters

- Nothing is ideal
- SDR signal always has spurs
- They must be filtered to avoid harmful interference
- E.g. this GSM850 signal interferes with 2.4GHz band
- Again, please, never ever run high power without filters!
Configuring osmo-bts-trx

osmo-bts.conf:

phy 0
 instance 0
 osmotrx rx-gain 8
 osmotrx tx-attenuation 0
 osmotrx maxdly 20
 instance 1
 osmotrx rx-gain 8
 osmotrx tx-attenuation 0
 osmotrx maxdly 20

bts 0
 settsc
 ms-power-loop -50
 timing-advance-loop
 trx 0
 phy 0 instance 0
 trx 1
 phy 0 instance 1

SDR receive gain.

SDR transmit attenuation relative to maximum Tx power in dB. Max Tx power is up to specific hardware.

Maximum accepted distance to a phone in GSM symbols. 1 GSM symbol = 550 meters [1].

settsc for osmo-trx
setbsic for CalypsoBTS [2]

Target RSSI value of received signal. BTS will increase/decrease MS power to hit this value.
NB: RSSI value is reported by osmo-trx and can be dBFS or dBm depending on hardware and osmo-trx configuration.

Enable timing advance loop (always do that unless you’re 100% sure you don’t need it).

Configuring osmo-trx

• No VTY, no file configuration
• Only command line options
• Most important ones:
 – l Logging level (EMERG, ALERT, CRT, ERR, WARNING, ...)
 – e Enable EDGE receiver
 – m Enable multi-ARFCN transceiver (default=disabled)
 – x Enable external 10 MHz reference
 – g Enable GPSDO reference
 – c Number of ARFCN channels (default=1)
 – R RSSI to dBm offset in dB (default=0)
• Refer to `osmo-trx -h` for more options
Configuring osmo-trx: startup

On startup osmo-trx shows its configuration, so you could check if you’re doing it right:

```
$ ./osmo-trx
linux; GNU C++ version 4.8.4; Boost_105400; UHD_003.010.001.001-release
opening configuration table from path :memory:
Config Settings
    Log Level................. NOTICE
    Device args............... 
    TRX Base Port............. 5700
    TRX Address............... 127.0.0.1
    Channels.................. 1
    Tx Samples-per-Symbol... 4
    Rx Samples-per-Symbol... 1
    EDGE support............. Disabled
    Reference................ Internal
    C0 Filler Table........... Disabled
    Multi-Carrier............ Disabled
    Diversity................. Disabled
    Tuning offset............ 0
    RSSI to dBm offset...... 0
    Swap channels............ 0
```
Configuring osmo-trx: examples

- **UmTRX with EDGE:**
 - osmo-trx -c 2 -R 38 -e

- **USRP B200 single channel with GPSDO:**
 - osmo-trx -g

- **USRP B200 multi-channel with GPSDO:**
 - osmo-trx -m -c 3 -g -e

- **USRP B210 with GPSDO:**
 - osmo-trx -c 2 -g