
Running a basic Osmocom GSM network
Harald Welte <laforge@gnumonks.org>

What this talk is about
Implementing GSM/GPRS network elements as FOSS

Applied Protocol Archaeology

Doing all of that on top of Linux (in userspace)

Running your own Internet-style network
use off-the-shelf hardware (x86, Ethernet card)

use any random Linux distribution

configure Linux kernel TCP/IP network stack

enjoy fancy features like netfilter/iproute2/tc

use apache/lighttpd/nginx on the server

use Firefox/chromium/konqueor/lynx on the client

do whatever modification/optimization on any part of the stack

Running your own GSM network
Until 2009 the situation looked like this:

go to Ericsson/Huawei/ZTE/Nokia/Alcatel/…

spend lots of time convincing them that you’re an eligible customer

spend a six-digit figure for even the most basic full network

end up with black boxes you can neither study nor improve

WTF?

I’ve grown up with FOSS and the Internet. I know a better world.

Why no cellular FOSS?
both cellular (2G/3G/4G) and TCP/IP/HTTP protocol specs are publicly available for
decades. Can you believe it?

Internet protocol stacks have lots of FOSS implementations

cellular protocol stacks have no FOSS implementations for the first almost 20 years of
their existence?

it’s the classic conflict

classic circuit-switched telco vs. the BBS community

ITU-T/OSI/ISO vs. Arpanet and TCP/IP

Enter Osmocom
In 2008, some people (most present in this room) started to write FOSS for GSM

to boldly go where no FOSS hacker has gone before

where protocol stacks are deep

and acronyms are plentiful

we went from bs11-abis to bsc_hack to OpenBSC

many other related projects were created

finally leading to the Osmocom umbrella project

Classic GSM network architecture

Structure of a GSM network

CN: Core NetworkMS: Mobile Station

UE: User
Equipment

ME: Mobile
Equipment

ICC
GERAN: GSM EDGE Radio

Access Network
BSS: Base Station System GPRS PS:

Packet Switched
PS & CS

CS: Circuit
Switched

AN: Access Network

MSC: Mobile
Switching Centre HSSUm

SIM-ME

Abis

Gb

PSTN

A
Nb

Mc

Nc

E

B

C
H

D

G

F

Gf,Sv
Gd

Gn

Gc

Gp
Gi

PSTN

Internet

1 2 3

4 5 6

7 8 9

0 *

BTS: Base
Transceiver

Station

BSC:
Base Station

Controller

CS-MGW

SGSN

MT/TE

SIM

GGSN

VLR

EIR

MSC server

1 2 3

4 5 6

7 8 9

0 *

HLR AuC

SMS-GMSC

1 2 3

4 5 6

7 8 9

0 *

1 2 3

4 5 6

7 8 9

0 *

GMSC

GSM Acronyms, Radio Access Network
MS

Mobile Station (your phone)

BTS

Base Transceiver Station, consists of 1..n TRX

TRX

Transceiver for one radio channel, serves 8 TS

TS

Timeslots in the GSM radio interface; each runs a specific combination of logical channels

BSC

Base Station Controller

GSM Acronyms, Core Network
MSC

Mobile Switching Center; Terminates MM + CC Sub-layers

HLR

Home Location Register; Subscriber Database

SMSC

SMS Service Center

GSM Acronyms, Layer 2 + 3
LAPDm

Link Access Protocol, D-Channel. Like LAPD in ISDN

RR

Radio Resource (establish/release dedicated channels)

MM

Mobility Management (registration, location, authentication)

CC

Call Control (voice, circuit switched data, fax)

CM

Connection Management

Osmocom GSM components

Gb/IPAbis/IP

sy sm oBTS direct PHY access

PCU Sock

SDR Hardware

OsmoT RX Transceiver

VTY

OsmoBTS

osmo-bts-trx osmo-bts-sysmo

CTRL

sysmoBTS PHY
sysmoBTS Hardware

Abis/IP

OsmoBSC

VTY CTRL VTY CTRL

OsmoSGSN

A/IP

OsmoNITB
VTY CTRL

Includes functionality of
* BSC
* MSC/VLR
* HLR/AUC
* SMSC

OsmoPCU

CTRLVTY

Gb/IP

3rd Party SGSN

GTP/IP GTP/IP

OpenGGSN 3rd Party
GGSN

GTP/IP GTP/IP

OpenGGSN 3rd Party
GGSN

3rd Party MSC
and/or existing other
core network elements

Linux Call Router
SoftSwitch / PBX

SIP

E1/PRI

BRI

External SMS
Applications

SS7 SS7 SS7

3rd Party BTS
Some support for
* Siemens
* Nokia
* Ericsson
* ip.access

Abis/IP Abis/E1

SMPPMNCC

Classic GSM network as digraph

Simplified OsmoNITB GSM network

which further reduces to the following minimal setup:

So our minimal setup is a Phone, a BTS and OsmoNITB.

Which BTS to use?
Proprietary BTS of classic vendor

Siemens BS-11 is what we started with

Nokia, Ericsson, and others available 2nd hand

OsmoBTS software implementation, running with

Proprietary HW + PHY (DSP): sysmoBTS, or

General purpose SDR (like USRP) + OsmoTRX

We assume a sysmoBTS in the following tutorial

OsmoBTS Overview

Abis/IP

SDR Hardware

OsmoTRX Transceiver

VTY

OsmoBTS

osmo-bts-trx osmo-bts-sysmo

CTRL

sysmoBTS PHY
sysmoBTS Hardware

Implementation of GSM BTS

supports variety of hardware/PHY options

osmo-bts-sysmo: BTS family by sysmocom

osmo-bts-trx: Used with OsmoTRX + general-purpose SDR

osmo-bts-octphy: Octasic OCTBTS hardware / OCTSDR-2G PHY

osmo-bts-litecell15: Nutaq Litecell 1.5 hardware/PHY

See separate talk about BTS hardware options later today.

BTS Hardware vs. BTS software
A classic GSM BTS is hardware + software

It has two interfaces

Um to the radio side, towards phones

Abis to the wired back-haul side, towards BSC

with today’s flexible architecture, this is not always true

the hardware might just be a network-connected SDR and BTS software runs o
a different CPU/computer, or

the BTS and BSC, or even the NITB may run on the same board

Physical vs. Logical Arch (sysmoBTS)

Physical vs. Logical Arch (SDR e.g. USRP B2xx)

IP layer traffic
Abis/IP signaling runs inside IPA multiplex inside TCP

Port 3002 and 3003 betewen BTS and BSC

Connections initiated from BTS to BSC

Voice data is carried in RTP/UDP on dynamic ports

⇒ Make sure you permit the above communication in your network/firewall config

Configuring Osmocom software
all native Osmo* GSM infrastructure programs share common architecture, as defined
by various libraries libosmo{core,gsm,vty,abis,netif,…}

part of this is configuration handling

interactive configuration via command line interface (vty), similar to Cisco
routers

based on a fork of the VTY code from Zebra/Quagga, now libosmovty

you can manually edit the config file,

or use configure terminal and interactively change it

Configuring OsmoBTS
OsmoBTS in our example scenario runs on the embedded ARM/Linux system inside
the sysmoBTS

we access the sysmoBTS via serial console or ssh

we then edit the configuration file /etc/osmocom/osmo-bts.cfg as described in the
following slide

Configuring OsmoBTS

bts 0
 band DCS1800 <1>
 ipa unit-id 1801 0 <2>
 oml remote-ip 192.168.100.11 <3>

1. the GSM frequency band in which the BTS operates

2. the unit-id by which this BTS identifies itself to the BSC

3. the IP address of the BSC (to establish the OML connection towards it)

Note All other configuration is downloaded by the BSC via OML. So most BTS
settings are configured in the BSC/NITB configuration file.

Purpose of Unit ID
Unit IDs consist of three parts:

Site Number, BTS Number, TRX Number

source IP of all BTSs would be identical

⇒ BSC identifies BTS on Unit ID, not on Source IP!

Configuring OsmoNITB
OsmoNITB is the osmo-nitb executable built from the openbsc source tree / git
repository

just your usual git clone && autoreconf -fi && ./configure &&
make install

(in reality, the libosmo* dependencies are required first…)

nightly packages for Debian 8, Ubuntu 16.04 and 16.10 available

OsmoNITB runs on any Linux system, like your speakers' laptop

you can actually also run it on the ARM/Linux of the sysmoBTS itself, having a
literal Network In The Box with power as only external dependency

Configuring OsmoNITB

network
 network country code 1 <1>
 mobile network code 1 <2>
 short name Osmocom <3>
 long name Osmocom
 auth policy closed <4>
 encryption a5 0 <5>

1. MCC (Country Code) e.g. 262 for Germany; 1 == Test

2. MNC (Network Code) e.g. mcc=262, mnc=02 == Vodafone; 1 == Test

3. Operator name to be sent to the phone after registration

4. Only accept subscribers (SIM cards) explicitly authorized in HLR

5. Use A5/0 (== no encryption)

Configuring BTS in OsmoNITB (BTS)

network
 bts 0
 type sysmobts <1>
 band DCS1800 <2>
 ms max power 33 <3>
 periodic location update 6 <4>
 ip.access unit_id 1801 0 <5>
 codec-support fr hr efr amr <6>

1. type of the BTS that we use (must match BTS)

2. frequency band of the BTS (must match BTS)

3. maximum transmit power phones are permitted (33 dBm == 2W)

4. interval at which phones should send periodic location update (6 minutes)

5. Unit ID of the BTS (must match BTS)

6. Voice codecs supported by the BTS

Configuring BTS in OsmoNITB (TRX)

network
 bts 0
 trx 0
 arfcn 871 <1>
 max_power_red 0 <2>
 timeslot 0
 phys_chan_config CCCH+SDCCH4 <3>
 timeslot 1
 phys_chan_config TCH/F <4>
 ...
 timeslot 7
 phys_chan_config PDCH <5>

1. The RF channel number used by this TRX

2. The maximum power reduction in dBm. 0 = no reduction

3. Every BTS needs need one timeslot with a CCCH

4. We configure TS1 to TS6 as TCH/F for voice

5. We configure TS6 as PDCH for GPRS

What a GSM phone does after power-up
Check SIM card for last cell before switch-off

if that cell is found again, use that

if not, perform a network scan

try to find strong carriers, check if they contain BCCH

create a list of available cells + networks

if one of the networks MCC+MNC matches first digits of IMSI, this is the
home network, which has preference over others

perform LOCATION UPDATE (TYPE=IMSI ATTACH) procedure to network

when network sends LOCATION UPDATE ACCEPT, camp on that cell

→ let’s check if we can perform LOCATION UPDATE on our own network

Verifying our network
look at stderr of OsmoBTS and OsmoNITB

OsmoBTS will terminate if Abis cannot be set-up

expected to be re-spawned by init / systemd

use MS to search for networks, try manual registration

observe registration attempts logging level mm info

→ should show LOCATION UPDATE request / reject / accept

use the VTY to explore system state (show *)

use the VTY to change subscriber parameters like extension number

Exploring your GSM networks services
use *#100# from any registered MS to obtain own number

voice calls from mobile to mobile

SMS from mobile to mobile

SMS to/from external applications (via SMPP)

voice to/from external PBX (via MNCC)

explore the VTY interfaces of all network elements

send SMS from the command line

experiment with silent call feature

experiment with logging levels

use wireshark to investigate GSM protocols

Using the VTY
The VTY can be used not only to configure, but also to interactively explore the system
status (show commands)

Every Osmo* program has its own telnet port

Program Telnet Port

OsmoPCU 4240

OsmoBTS 4241

OsmoNITB 4242

OsmoSGSN 4245

ports are bound to 127.0.0.1 by default

try tab-completion, ? and list commands

Using the VTY (continued)
e.g. show subsciber to display data about subscriber:

OpenBSC> show subscriber imsi 901700000003804
 ID: 12, Authorized: 1
 Extension: 3804
 LAC: 0/0x0
 IMSI: 901700000003804
 TMSI: F2D4FA0A
 Expiration Time: Mon, 07 Dec 2015 09:45:16 +0100
 Paging: not paging Requests: 0
 Use count: 1

try show bts, show trx, show lchan, show statistics, …

Further Reading
User Manuals

See http://ftp.osmocom.org/docs/latest/

Wiki

See http://osmocom.org/projects/openbsc

http://ftp.osmocom.org/docs/latest/
http://osmocom.org/projects/openbsc

The End
so long, and thanks for all the fish

I hope you have questions!

have fun exploring mobile technologies using Osmocom

interested in working with more acronyms? Come join the project!

Check out https://osmocom.org/ and openbsc@lists.osmocom.org

https://osmocom.org/
mailto:openbsc@lists.osmocom.org

