

ICs for Communications
High Speed HDLC-Frame Relay

SAB 82532 with SAB 82258 and SAB 80C166

Application Note 08.93

*

Data Classification

Maximum Ratings

Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible
damage to the integrated circuit.

Characteristics

The listed characteristics are ensured over the operating range of the integrated circuit. Typical
characteristics specify mean values expected over the production spread. If not otherwise specified,
typical characteristics apply at TA = 25 °C and the given supply voltage.

Operating Range

In the operating range the functions given in the circuit description are fulfilled.

For detailed technical information about “Processing Guidelines” and “Quality Assurance” for
ICs, see our “Product Ovewrview” .

SAB 82532
Revision History: Original Version 08.93

Previous Releases:

Page Subjects (changes since last revision)

Published by Siemens AG, Bereich Halbleiter, Marketing-Kommunikation,
Balanstraße 73, 81541 München.

© Siemens AG 1993. All Rights Reserved.

As far as patents or other rights of third parties are concerned, liability is only assumed for components,
not for applications, processes and circuits implemented within components or assemblies.

The information describes the type of component and shall not be considered as assured characteristics.

Terms of delivery and rights to change design reserved.

For questions on technology, delivery and prices please contact the Semiconductor Group Offices in Ger-
many or the Siemens Companies and Representatives worldwide (see address list).

Due to technical requirements components may contain dangerous substances. For information on the
types in question please contact your nearest Siemens Office, Semiconductor Group.

Siemens AG is an approved CECC manufacturer.

Packing

Please use the recycling operators known to you. We can also help you - get in touch with your nearest
sales office. By agreement we will take packing material back, if it is sorted. You must bear the costs of
transport.

For packing material that is returned to us unsorted or which we are not obliged to accept, we shall have
to invoice you for any costs incurred.

Edition 08.93
This edition was realized using the software system FrameMaker.

*

SAB 82532

Table of Contents Page

Semiconductor Group 3 08.93

1 General Information .4

2 Introduction .6

3 Hardware of the High Speed HDLC Frame Relay .7
3.1 ESCC2 with SAB 80C166 .8
3.2 ADMA with SAB 80C166 .9
3.3 ESCC2 with ADMA .12

4 Device Driver Modules .14
4.1 Overview .14
4.2 ESCC2-Device Driver Module Entries .22
4.2.1 Message Entry Point .22
4.2.2 Interrupt Entry Point .24
4.3 Receiver and Transmitter .25
4.3.1 Receiver .26
4.3.2 Transmitter .27
4.4 Data Structure of the ESCC2-Device Driver Module32
4.5 ADMA-Device Driver Module .35
4.6 Software Workaround for Single-Cycle Mode .37

5 The Application Module HSHFR .40
5.1 Structure of the Application Module .40
5.2 Detailed Description of the Application Module .40

6 Performance of the System .41
6.1 Time for Data Handling .41
6.2 Bit Rate and Frame Rate .45
6.3 Time for Application .47
6.4 Performance Improvements .48

7 Device Driver System .49
7.1 Overview .49
7.2 General Module Architecture .51
7.3 Integration of Modules .52
7.4 The Example HSHFR .52
7.5 Application Program Interface .54

8 Appendix .56
8.1 Appendix A .56
8.2 Appendix B .71
8.3 Appendix C .71

*

General Information

Semiconductor Group 4

General Information

1 General Information

SAB 82532 with SAB 82258 and SAB 80C166

High Speed HDLC-Frame Relay

This application note describes a simple application example for an high-speed HDLC-frame relay
using the Enhanced Serial Communication Controller ESCC2 (SAB 82532), the Advanced
DMA-Controller ADMA (SAB 82258) and the 16-Bit Microcontroller SAB 80C166. Transfer rates up
to 10 Mbit/s are supported. This application note is based on a real world and fully tested
communication subsystem. It demonstrates the advantages of using the ESCC2 in combination
with the SAB 82258 and the SAB 80C166 for high speed communication purposes.

Contents

● Chapter 1
General Overview

● Chapter 2
How to integrate the ESCC2 with ADMA into an 80C166 microprocessor system. All hardware
aspects concerning the ESCC2, ADMA and 80C166 are explained.

● Chapter 3
Detailed description of how the ESCC2 can be programmed to handle HDLC-communication for
higher data rates supported by the DMA-controller ADMA. The basic architecture of an object
oriented Device Driver Module for the ESCC2 is explained. Furthermore an idea of the
cooperation between the ADMA-device driver module and the ESCC2-device driver module is
given. The initialization and the programming of the ADMA is described.

Functional Block Diagram

ITB04301

ADMA ESCC2

RS-422
10 Mbit/s

HDLC
Terminal

High Speed HDLC Frame Relay

PC Add-On-Card 10 Mbit/s
RS-422

Terminal
HDLC

SAB 80C166

*

Semiconductor Group 5

● Chapter 4
A very simple application program module for the HDLC-frame relay on top of the ESCC2-device
driver software and the underlying run-time software is described.

● Chapter 5
The performance of the system thus realized is analyzed and presented. Especially the aspects
of frame length, frame rate and the operational overhead are discussed.

● Chapter 6
Description of the different software levels and their realization. A brief introduction to the basic
operating software and the corresponding Application Program Interface (API) for the
C-language is provided. A minimum set of only 13 interface functions and macros is necessary
to integrate the device driver and relay software.

● Appendix A
Detailed schematics for the hardware.

● Appendix B
Corresponding PAL-equations (1 PAL).

● Appendix C
Source code listings of all relevant software modules.

● Appendix D
A make file is included, which allows to implement the software by using the software
development tools from Tasking.

Remarks

It is recommended to have a basic understanding of the ESCC2-interrupt interface as well as of the
ESCC2 DMA-interface described in the ESCC2 Technical Manual. For details concerning the
ADMA or SAB 80C166 please refer to the corresponding User’s Manual.

For this application note the 80C166-compiler and assembler from Boston Systems Office/Tasking
have been used. The software is completely written in C, with the exception of file
DDSHSERV.SRC, an assembler file containing the processor specific interrupt interface (setting
interrupt frames and vectors).

This application note has been realized with a PC add-on board to shorten the software
development cycles. It supports a fast download of device driver software on to the communication
subsystem directly from the PC. The application example itself has been designed as a stand-alone
solution to reduce the requirements on an individual environment. This shall give you a first
impresssion of how easy it is to combine the ESCC2 with the ADMA and the 80C166 for
communication subsystems in general. Therefore the complexity of the software environment has
been reduced to a minimum.

*

SAB 82532

Semiconductor Group 6

2 Introduction

This application note describes a design example for a High Speed HDLC Frame Relay using the
SAB 82532 (Enhanced Serial Communication Controller – 2 Channels, ESCC2), the SAB 82258
(Advanced DMA-Controller, ADMA) and the microcontroller SAB 80C166. It is recommended that
before reading this application note, the user has a basic understanding of the interrupt and DMA-
interface of the SAB 82532, described in the “ESCC2 Technical Manual”.

In this description of the high speed HDLC-frame relay two basic subjects are discussed.

The first one is how the SAB 82532 with the DMA-controller ADMA can be integrated into
a hardware environment based on a 16-bit microcontroller from Siemens, the SAB 80C166. The
SAB 82532 as a peripheral device can be connected to the external bus of the SAB 80C166 without
using additional glue logic in the form of external hardware. The integration of the DMA-controller
SAB 82258, however, requires hardware components in the form of a bus controller, transceivers
and so forth since the coprocessor ADMA is able to operate as a bus master.

The second subject is the software of the high speed HDLC-frame relay. The special device drivers
for the ESCC2 and the ADMA have the advantage of utilizing the devices’ features concerning
DMA-transfer and interrupt treatment to enhance performance. The tasks of data transfer and
interrupt servicing are shared effectively between the DMA-controller and the microcontroller.

Due to their 16-bit system interface and all other inherent powerful features, the ESCC2 with the
ADMA and the 80C166 build a strong combination well suited for high speed communication in
general.

This application example has been written in C using the C-Compiler and Assembler 80C166 from
Boston Systems Office/Tasking.

Figure 1
Application HDLC-Frame Relay

ITS04302

LAN1

2LAN

Download of
SAB 80C166
Program

High Speed
HDLC Frame Relay

*

SAB 82532

Semiconductor Group 7

3 Hardware of the High Speed HDLC Frame Relay

The hardware of the high speed HDLC-frame relay is realized as a plug-in PC-board. Beside the
microcontroller SAB 80C166 and the DMA-controller ADMA important elements of the hardware are
listed in the following: a 64 K EPROM containing the firmware, a 256 K RAM, a bus controller,
address latches and a PAL for address decoding.

Figure 2 shows the functional block diagram of the hardware. A detailed schematic can be found in
Appendix A.

The SAB 80C166 provides a total addressable memory space of 256 Kbytes. This address space
is arranged in four segments of 64 Kbytes each, and each segment is again subdivided in
four pages of 16 Kbytes each. Figure 3 gives an overview of the memory organization of the
HDLC-frame relay. The equations to decode the corresponding chip select signals are listed in
Appendix B.

Figure 2
Functional Block Diagram

ITB04304

SAB 80C166 256 K SRAM 64 K EPROM
SAB 82258 SAB 82532

4 K DPRAM

(ADMA) (ESCC2)

PC Interface Address Decoder

RS 422 Line Driver

*

SAB 82532

Semiconductor Group 8

Figure 3
Memory Organization

3.1 ESCC2 with SAB 80C166

Microprocessor Interface

Practically no external components are required to adapt the ESCC2 to the SAB 80C166. The
ESCC2 is directly connected to the data bus and address bus of the SAB 80C166 system. The
RD-, WR- and BHE signals are also connected directly.

The CS for the SAB 82532 is generated in a PAL. WIDTH is connected to + 5 V, which configures
the ESCC2 into 16-bit bus mode.

Interrupts

Since no interrupt acknowledge cycle is supported by SAB 80C166 pin INTA is deactivated by
connecting INTA to + 5 V. Because the application includes only one ESCC2, IE0 and IE1 are not
used; they are tied to GND. The INT-pin is connected to P2.1 (CC1IO); it has to be considered that
the interrupt is (positive) edge triggered. To avoid loosing an interrupt it is recommended to mask
interrupts for a short time before leaving the interrupt function. In this way a new edge can be forced,
because the SAB 82532 stores pending interrupts and reactivates the interrupt line when the
interrupt mask is withdrawn.

ITD04303

SAB 82258
(ADMA)

(ESCC2)
82532SAB

0F7FFH

0F400 H

H0F3FF

H0F000

0FFFF

0F800

SRAM

DPRAM
0E000

0EFFF

0DFFF

08000
SRAM

EPROM/SRAM
00000

07FFF
’10000 H

’20000 H
’30000 H

SRAM

1FFFFH
2FFFFH

3FFFFH

SRAM

H

H

H

H

H

H

H

H

*

SAB 82532

Semiconductor Group 9

Reset

Since RES is an active high input signal, the RSTOUT-signal of the SAB 80C166 has to be inverted.

Serial Interface

The input signals RxDn, CDn, RxCLKn (n = A, B) are pulled up to + 5 V by a resistor of 10 kΩ.
Modem control functions are not supported in this application, therefore RTSn and CTSn are
connected to each other.

The physical layer is realized with an RS-422 compatible line driver interface, consisting of the
driver circuit AM26LS30 and the receiver circuit AM26LS32. These circuits are connected to the
TxDn and RxDn signals of the ESCC2.

Timing Characteristics

The timing of the microcontroller can be adapted to that of the ESCC2 by changing via software the
default values of the SAB 80C166 (refer to SAB 80C166 Technical Manual).

Starting with the address setup time tSU(A), which is specified as 0 ns for the microcontroller and
> 5 ns for the SAB 82532, a read/write delay has to be introduced. The programmed read/write
delay causes a delay by a quarter of a machine cycle (25 ns at fOSC = 40 MHz). This delay does not
by itself extend the memory cycle time, because through this programmed delay the RD-WR-pulse
width is shortened from 65 ns to 40 ns. The SAB 82532 specification however requires a RD-pulse
width of > 60 ns; therefore one wait state has to be programmed. One memory cycle time wait state
requires half a machine cycle (50 ns at fOSC = 40 MHz).

The address hold time tH(A) of the SAB 82532 has to be equal to or longer than 10 ns (SAB 80C166:
0 ns). The hold time has to be lengthened with an additional memory tristate time wait state.

The timing can be modified by programming the bus configuration register or by modifying the
start-up code of the system. An advantage is that the timing can be modified individually in one
selected address space. In section 2.2 an example is given for programming the bus configuration
register matching the timing specification of the ESCC2 and the ADMA.

3.2 ADMA with SAB 80C166

In this application the ADMA operates as a coprocessor on the same bus as the microcontroller.
This operating mode is called local mode. Figure 4 shows the architecture of the system. The bus
management is controlled by a HOLD/HLDA-handshake.

Microprocessor Interface

The ADMA has an adaptive bus interface; so the bus is configured in the non multiplex ’286 mode
of the SAB 80C166. When ADMA is bus master, it generates a write/read request by activating the
bus status lines S0 or S1: therefore a bus controller has to be added which generates the
corresponding commands WR and RD from S0 and S1.

Since the ADMA uses the pipelined addressing mode the addresses of the following bus cycle are
valid although the current bus cycle is not finished yet. For that reason external address latches
have to buffer the addresses during the whole bus cycle. The address latches are controlled by the
bus controller, too.

*

SAB 82532

Semiconductor Group 10

Assuming that the SAB 80C166 is bus master the internal registers of the ADMA have to be
accessible. Hence the bidirectional, lower eight address lines of the ADMA are driven by
transceivers.

The transceivers are activated if the SAB 80C166 is bus master; the latches are activated if the
ADMA is bus master. In this way a conflict on the address bus is avoided.

Figure 4
Architecture of System

To avoid a conflict on the control lines the signals WR and RD generated by the bus controller are
also driven by transceivers. These transceivers are activated if the ADMA is bus master.

ITS04270

D0..D15 A0..A17

DREQ0
DREQ1
DACK0
DACK1

DREQ2
DREQ3

DACK2
DACK3

CS_ADMA

D0..D15 S0 S1A0..A17

INT

WRBHEA0..A6 RD D0..D15

DRTA
DRRA

DACKA

DRTB

DACKB

DRRB

CS_ESCC2

ESCC2

RD BHEWR

DecoderBus-
Controller

Latches

Logic

WR

BHE
RD

D0..D15RDA0..A6 BHE WRA10..A17System Bus

&

Trans.

&

ADMA

System
Memory

80C166
SAB

Port 2
HLDA
HOLD

*

SAB 82532

Semiconductor Group 11

Reset

When activating the reset input, the ADMA is forced into its initial state. While the reset input
is active, line A23 must be forced to the appropriate level to select the desired bus interface mode
(286 mode).

Bus Arbitration

To arbitrate access to the bus between the SAB 82258 and the microcontroller, the signals HOLD
and HLDA serve for communication. Normally the ADMA competes for the bus via HOLD, the
microcontroller grants access to the bus via HLDA. The HLDA-signal can also be deactivated in
order to force the ADMA off the bus for a certain reason (kick off). The bus arbitration is controlled
by a HOLD/HLDA-handshake.

In order to support multi-master systems and communication with external DMA-functions, a bus
arbitration feature is implemented in the SAB 80C166. The signals HOLD and HLDA are
implemented as second alternate functions at pins P2.15 (HOLD) and P2.14 (HLDA). The control bit
HLDEN of the Processor Status Word register (PSW) has to be programmed to ‘1’ to enable the bus
arbitration function of these pins.

Slave Interface

The slave interface is used to access the ADMA’s internal registers. Although nearly all of the
communication between CPU and ADMA is done via memory based data blocks, some direct
accesses to the ADMA-registers are necessary.

For example during the initialization phase the General Mode Register must be written, or to start
a channel the Command Pointer Register and the General Command Register must be loaded.

The slave interface is enabled by the CS-input and consists of the following lines:

● RD, WR – control lines (input)
● A0 – A7 – register address (inputs)
● D0 – D15 – data lines (inputs/outputs)

Since the microcontroller and the DMA-controller have different clocks asynchronous access by
using the control lines RD and WR is used.

Timing Characteristics

Similar to the ESCC2 the timing of the microcontroller can be adapted to that of the ADMA by
changing via software the default values of the SAB 80C166 (refer to chapter 2.1).

To guarantee the asynchronous access setup time a fast PAL and a fast address transceiver have
to be used. Moreover a read write delay has to be programmed.

Additionally the RD-impulse width has to be lengthened by five wait states in order to match the
timing specification of the ADMA.

The modifications described here and them concerning the ESCC2 can be programmed in the bus
configuration register using the _bfld (bit field) instruction:

_bfld (BUSCON1, 0x00FF, 0x00CA);

*

SAB 82532

Semiconductor Group 12

The _bfld instruction assigns the constant 0x00CA to the bit field indicated by the constant mask
0x00FF of the bitaddressable operand BUSCON1. This statement configures the bus interface with
one read/write delay, five wait states and one memory tristate time wait state. For more information
e.g. address range selection refer to listings of the DDSH-module in Appendix C (DdshInit ()).

3.3 ESCC2 with ADMA

DMA-Interface

The DMA-interface consists of three lines:

● DREQ (– DMA-request)
● DACK (– DMA-acknowledge)
● EOD (– End of DMA)

The first two lines work as request and acknowledge lines to control synchronized DMA-transfers as
known from conventional DMA-controllers.

The EOD-signals are not used in the application at hand.

Transfer Modes

Each channel controls data transfer in two basic operating modes:

● single-cycle mode
● two-cycle mode

In single-cycle mode, bytes or words are transferred directly from the data source to the data
destination in a single bus cycle per transfer. Using SAB 82C258-A 12 with 25 MHz this mode
enables a total data rate of up to 12.5 Mbytes per second, and that as single channel data rate or
as a cumulative data rate of multiple channels. Thus the advantage in single-cycle mode lies in
speed.

In two-cycle mode, source data is always stored in the ADMA before being sent of the destination.
Although half as fast as single-cycle transfer, it has several compensating advantages. Since the
data actually enters the controller, there is a possibility to act on the data.

As a very useful feature for single-cycle transfers, the ESCC2 supports the optional inversion of the
functions of read/write control lines. If programmed via register CCR2 (RWX bit is set) RD and WR
are exchanged internally in Intel bus interface mode while DACK is active (see figure 5).

*

SAB 82532

Semiconductor Group 13

Figure 5
RD-/WR-Exchange

The application at hand operates in two-cycle mode. Using single-cycle mode the following problem
arises:

According to the ESCC2-specification the DRR is reset with the falling edge of RD during the last
read access to RFIFO. The RD-signal is generated by the bus controller from S1 activated by the
DMA-controller. The ADMA however checks the DREQ-signal in view of the next DMA-cycle before
the bus controller has generated the RD-signal from the corresponding S1. That means that the
trailing edge of DREQ is received later, a continuous request is assumed and subsequent transfers
will be executed. There is no hardware workaround to solve this problem. In chapter 4 a software
workaround is described.

Timing Characteristics

To guarantee correct operation for SAB 82C258-A 12 with 25 MHz a fast PAL and a fast control line
(RD and WR) transceiver have to be used.

TS04271Ι

WR

RD

RAM

Controller
DMA- ESCC2

RD

WR

Intern:

WR

RDWR

RD

*

SAB 82532

Semiconductor Group 14

4 Device Driver Modules

4.1 Overview

To run the application the following tasks have to be executed:

● the device driver system has to be initialized
● the devices have to be initialized
● messages have to be transferred from the application module to the ESCC2-device driver

module and vice versa
● the channel programs of the ADMA have to be prepared; the ADMA-channels have to be started
● the channel programs have to be fetched from RAM
● interrupts have to be served
● data have to be transferred from RAM to the ESCC2 and vice versa

These tasks are executed either by the SAB 80C166 or by the DMA-controller ADMA. Figures 6
to 9 give an overview of the specific tasks in sequence. The upper corner at the right side of each
element contains the device that executes the corresponding task. Figure 6 shows the sequence of
initialization; after that data can be received or transmitted. The procedure of transmission is
controlled by transmit requests of the application as well as by DMA-requests and XPR-interrupts
of the ESCC2 (figures 7/8). The procedure of receiving is controlled by DMA-requests and RME-
interrupts of the ESCC2 (figure 9). In the following an example is given to design appropriate
software.

*

SAB 82532

Semiconductor Group 15

Figure 6
Sequence of Initialization Actions

Executed by 80C166

Executed by ADMA

Initialize the Device Driver System
(see chapter 6)

Initialize ADMA Device
Initialize ESCC2 Device

Executed by 80C166

Executed by 80C166

Prepare and start ADMA channels that
serve the receive directions of the ESCC2

prepared by 80C166 before
Prefetch channel program code from RAM

ITD04272

directions of the ESCC2
Set appropriate addresses to the receive

Executed by 80C166

*

SAB 82532

Semiconductor Group 16

Figure 7
Sequence of Transmitter Actions after Transmit Request by Application

Executed by 80C166

Send transmit message from Application
Module to ESCC2 Device Driver Module

queue of the ESCC2 Device Driver Module
Append message to transmit message

Executed by 80C166

Executed by 80C166

Write appropriate frame length and
DMA mode bit to XBC register of ESCC2

ITD04273

prepared by 80C166 before
Prefetch program code from RAM

Executed by ADMA

Prepare and start the ADMA channel
that serves the transmitter of the
corresponding ESCC2 channel

Executed by 80C166

Executed by 80C166

Executed by ADMA

Transfer data (DMA) when requested
by ESCC2

Set transmit command XTF to
command register of the ESCC2

(see XPR interrupt)

Transmit message queue empty?

Yes

No

*

SAB 82532

Semiconductor Group 17

Figure 8
Sequence of Transmitter Actions after XPR-Interrupt

queue in ESCC2 Device Driver Module
Get next list element of transmit message

Executed by 80C166

Executed by 80C166

Write appropriate frame length and
DMA mode bit to XBC register of ESCC2

ITD04274

prepared by 80C166 before
Prefetch channel program code from RAM

Executed by ADMA

Prepare and start the ADMA channel
that serves the transmitter of the
corresponding ESCC2 channel

Executed by 80C166

Executed by 80C166

Executed by ADMA

Transfer data (DMA) when requested
by ESCC2

Set transmit command XTF to
command register of the ESCC2

Yes

No

After XPR interrupt
transmit message queue empty ?

(For more information
see chapter 3.3)

*

SAB 82532

Semiconductor Group 18

Figure 9
Sequence of Receiver Actions

by ESCC2
Transfer data (DMA) when requested

Executed by ADMA

Executed by 80C166

After RME interrupt read RBC register and
RSTA

ITD04275

prepared by 80C166 before
Prefetch channel program code from RAM

Executed by ADMA

Prepare and start again the ADMA channel
for further requests by the receiver of the
corresponding ESCC2 channel

Executed by 80C166

Executed by 80C166

Send message (frame) from ESCC2 Device
Driver Module to Application Module

Set RMC command to
command register of the ESCC2

RME
Interrupt

Executed by 80C166

*

SAB 82532

Semiconductor Group 19

The device driver modules ESCC2 and ADMA, integrated into the device driver system’s
environment, represent the connection to the Siemens devices (Enhanced Serial Communication
Controller, ESCC2 and Advanced DMA-Controller, ADMA). Therefore, referring to the
programming of the devices by the user, these modules have to be understood as the interface
modules between the application level and the devices themselves. The functional position of the
device driver modules in the system is shown in figure 10.

The ESCC2-device driver is able to send and to receive messages via the device driver system and
to serve interrupts generated by the ESCC2-device itself. The ADMA-device driver module provides
nine service routines to control the ADMA-device and the data transfer. Figure 11 shows the
correspondence between the serial channels of the ESCC2 and the DMA-channels of the ADMA;
in addition the service routines provided by the ADMA-module are listed.

Supported by the device driver system the application program module HSHFR is able to direct
individual tasks to the ESCC2-device driver module. The ESCC2-device driver module receives
these messages and passes them to the ESCC2 and – via service routines of the ADMA-device
driver module – to the ADMA, matching the device’s programming specification.

The initialization and the control of the devices are performed by the CPU. The data are transferred
by the ADMA, when a DMA-transfer request occurs.

*

SAB 82532

Semiconductor Group 20

Figure 10
Device Driver Modules

ITB04305

Application
Program
Module
HSHFR

Device Driver System
X

Device
Driver
Module
ESCC2ADMA

Module
Driver
Device

C/I-Messages

C/I-MessagesService Routines

Control Data Control Interrupts

Device
ADMA

Device
ESCC2

Data A

B

Serial Data

*

SAB 82532

Semiconductor Group 21

Figure 11
Correspondence between Serial Channels of ESCC2 and DMA-Channels of ADMA

Service Routines

InitAdmaDevice

InitAdmaChanRc [ESCC2_CH_A] = InitAdmaChan0
InitAdmaChanRc [ESCC2_CH_B] = InitAdmaChan1
InitAdmaChanTx [ESCC2_CH_A] = InitAdmaChan2
InitAdmaChanTx [ESCC2_CH_B] = InitAdmaChan3

StartAdmaChanRc [ESCC2_CH_A] = StartAdmaChan0
StartAdmaChanRc [ESCC2_CH_B] = StartAdmaChan1
StartAdmaChanTx [ESCC2_CH_A] = StartAdmaChan2
StartAdmaChanTx [ESCC2_CH_B] = StartAdmaChan3

Before that the CPU has to

● generate a channel specific “command block” somewhere in memory,
● inform the ADMA where that block is and
● give a “start channel” command.

An important difference between interrupt mode and DMA-mode is that using DMA-mode the
device driver module ESCC2 hasn’t to distinguish between short frames (shorter than or equal to 32
bytes) and long frames (longer than 32 bytes). Assuming normal operation only one interrupt occurs
for one frame and transfer direction: RME-interrupt for receive direction and XPR-interrupt for
transmit direction. So the ESCC2-device driver module can be made very compact since the data
transfer itself is performed by the DMA-controller ADMA.

The source code of the driver modules is found in Appendix C. The modules ESCC2.H and
ADMA.H contain predefined values, data structures and function types, whereas all C-functions
concerning ESCC2 and ADMA are to be found in ESCC2.C and ADMA.C.

TS04276Ι

Serial
Channel A

Serial
Channel B

Rc

Tx

Rc

Tx

DMA-Channel 0

DMA-Channel 2

DMA-Channel 1

DMA-Channel 3

ESCC2 ADMA

*

SAB 82532

Semiconductor Group 22

4.2 ESCC2-Device Driver Module Entries

The ESCC2-device driver module is accessible by both the device driver system and the ESCC2-
device itself. The kind of access, however, is quite different.

The device driver system sends messages to the ESCC2-device driver module via the message
entry point. On the other hand the ESCC2-device accesses to the driver module by entering an
interrupt entry point. The two kinds of entry points are discussed below.

4.2.1 Message Entry Point

To send messages to each other the modules of the device driver system use the module
identification for defining the source or destination of a message in its corresponding header.

All messages which are dedicated to the ESCC2-device driver module reach the defined message
entry point when the function Escc2MsgEntry (CI_MAILBOX far* message) is called by the device
driver kernel.

To send a message to the device driver module is the same as setting the module a task. At the
moment four different types of tasks are supported by the ESCC2-message entry point. These
tasks are distinguished by a task or message identification, called as ID.

In the application at hand the following message IDs are supported:

The functions of the message entry point Escc2MsgEntry (CIM MSG_DESCR_PTR cmd) are
shown in figure 12.

An important job of the message entry point is to decide quickly which action has to be executed
regarding the ID of the current task. So, for the sake of speed, a switch statement was implemented.

ID Action/Function

MODULE_INIT (= 0) Escc2Init()

INIT_DATA_LINK (= 1) InitDataLink()

ASSIGN_ADDRESS (= 2) AssignAddress()

SEND_FRAME (= 3) SendFrame()

*

SAB 82532

Semiconductor Group 23

Figure 12
Message Entry Point

In the following the actions are described in detail:

Escc2Init (CIM_MSG_DESCR_PTR command) initializes the ESCC2-device as well as the local
data structures. The base device address is set by executing DdshGetDeviceAddr (DEVICE1).

An important task is the initialization of the interrupt. As the basic address is known (see chapter
4.4), the registers can be accessed. At first all interrupts should be masked out by writing FFH into
the Interrupt Mask Register 0,1 (IMR0, IMR1).

Further pin INT must be programmed as active high, so 03H has to be written to the Interrupt Port
Configuration Register (IPC).

DdshSetHWIntVect (DEVICE1_INT, Escc2Interrupt) installs the interrupt entry. DdshIntSetMode
(DEVICE1_INT, MODE1) sets the interrupts into edge trigger mode. DdshIntCtrl (DEVICE1_INT,
INT_ON) enables the interrupt. For more information about the DDSH-interface see chapter 3.5).

InitDataLink (CIM_MSG_DESCR_PTR command) contains the general initialization of all ESCC2-
mode specific functions and data for one of the two data links. The data link (channel A or B) is
specified by the element Entity of the structure that is accessible by pointer command.

Parameter 1 of the CIM_MSG_DESCR structure accessible by the pointer command, selects the
receive mode (HDLC-auto mode/transparent mode). The clock mode is represented by parameter
2. By writing 60H into the Mode Register (MODE) for example the HDLC-non-auto mode and a
16-bit address field are selected. Furthermore the channel configurations are fixed by programming
the channel configuration registers.

During the execution of InitDataLink() the interrupt masks are set to enable the RME-, RFO-, XDU-
and XPR-interrupts in HDLC-mode corresponding to the DMA-transfer mode. Then the HDLC-
receiver and transmitter are reset.

Moreover the corresponding DMA-channels of the ADMA are initialized. For receive direction a
message buffer (Dlc → dmaRcMessage) is allocated and the appropriate ADMA-channel program
is started.

ITD04277

Escc2MsgEntry

ID = MODULE_INIT

ID = INIT_DATA_LINK

ID = ASSIGN_ADDRESS

ID = SEND_FRAME

Escc2Init

nitDataLink

AssignAddress

SendFrame

Ι

*

SAB 82532

Semiconductor Group 24

AssignAddress (CIM_MSG_DESCR_PTR command) writes the low address value into the
Receive Address Byte Low Register 1 (RAL1) and the high address value into the Receive Address
Byte High Register 1 (RAH1). These values are used for 2-byte address field recognition
corresponding to the ESCC2-non-auto mode. Parameter 1 of the CIM_MSG_DESCR structure
contains the high address value, Parameter 2 contains the low address value. After the execution
of this function only frames with the programmed address are received, assuming that the ESCC2
doesn’t operate in transparent mode.

SendFrame (CIM_MSG_DESCR_PTR command) inserts the command into the transmit queue of
the current data link structure and executes the transmitter action corresponding to the current state
of the transmitter.

4.2.2 Interrupt Entry Point

The interrupt entry point is introduced during initialization of the ESCC2-module in function
Escc2Init (…).

As mentioned in the Technical Manual, special events in the ESCC2 are indicated by means of a
single interrupt output with programmable characteristics (open drain, push-pull; IPC-register). The
interrupt requests the CPU to read status information from the ESCC2 and to execute appropriate
interrupt service routines. Since only one INT-request output is provided, the cause of an interrupt
must be determined by the CPU

– by evaluating the interrupt vector which is generated by the ESCC2 during an interrupt
acknowledge cycle, and/or

– by reading the ESCC2’s interrupt status registers (GIS, ISR0, ISR1, PIS).

Since the SAB 80C166 doesn’t support the interrupt acknowledge cycle interrupt polling mode is
used. As a result there is only one interrupt entry.

The interrupt function really can be seen as an entry to the core of the ESCC2-device driver module,
which mainly consists of a Transmitter and a Receiver (see figure 13).

After entering the interrupt function Escc2Interrupt(), the General Interrupt Status Register as well
as the channel specific Interrupt Status Register are analyzed. Then the action corresponding to the
specific kind of interrupt is executed (e.g. TxAction[…][…](), ServeRme(), …).

INTRET releases the interrupt logic of the SAB 80C166 to be able to accept further interrupts.

*

SAB 82532

Semiconductor Group 25

Figure 13
Interrupt Entry Point

A more detailed description of the receiver and the transmitter will follow in section 4.4.

To summarize, up to now the entry points of the ESCC2-module have been described. There are
two different kinds of entry points:

– the message entry point Escc2MsgEntry (…), which branches into functions corresponding to
message IDs,

– the interrupt entry point, that calls functions according to the interrupt indication.

4.3 Receiver and Transmitter

In DMA-mode the receiver and transmitter of the ESCC2-device driver module is easier to design
than in interrupt mode since it has not to be distinguished between short and long frames and the
data transfer itself is performed by the DMA-controller.

For the receiver no event driven finite state machine is necessary. The receiver routines are
reduced to ServeRme() and ServeRfo().

Since the transmitter organizes the send requests in a linked list a finite state machine is introduced
to guarantee a fast access to the next frame if there is one.

ITD04306

RME RFO XPR XDU

Receiver Transmitter

TX_FRAME

ESCC2 Device Driver Module

ESCC2 Device

Interrupts Interrupt Entry

*

SAB 82532

Semiconductor Group 26

4.3.1 Receiver

In DMA-mode there are only two reasons to activate the receiver: RME-interrupt and RFO-interrupt.

If a RME-interrupt occurs, the function ServeRme() is executed. At first the length of the received
frame is read from the RBC-register. The pointer to the received data is buffered in Dlc → message
and a new buffer Dlc → dmaRcMessage has to be allocated for subsequent frames. Since the
frame length is unknown a priori a data buffer with the maximum length is allocated. With this buffer
the DMA-controller is started again; finally the RMC-command is set, to enable the generation of
further receiver DMA-requests.

After that the receive status byte at the end of the frame is analyzed; it has to be decided if the
received frame is ok. If the frame is ok, a message is sent to the user, otherwise the function
ReportRcError() is executed, to give more detailed error information.

The RFO-interrupt is served by ServeRfo(). In this case an error message is generated and the
DMA-controller is started again with the same buffer.

Dlc → dmaRcMessage allocated before. Finally the HDLC-receiver of the ESCC2 is reset.

Figure 14
ServeRme()

ITD04278

StartAdmaChan(dmaMsg)

RM_INTERRUPT

CMDR_RMC

msg = dmaMsg
RcLength

dmaMsg = DdsmMsgBufAlloc()

Received Frame
O.K.?

ReportRcError0DdskSendMsg(msg)

NoYes

RBC register

*

SAB 82532

Semiconductor Group 27

Figure 15
ServeRfo()

4.3.2 Transmitter

The transmitter is realized as a finite state machine. Three events affect the transmitter:
XPR-interrupt, XDU-interrupt and the event TX_FRAME.

At the end of the initialization of the data link (see InitDataLink (…)) the current state of the
transmitter is set to IDLE. After that the HDLC-transmitter of the ESCC2 is reset. In response to the
reset an XPR-interrupt is generated. That means that the transmitter is ready.

The event TX_FRAME is derived from the application request SEND_FRAME (see
SendFrame (…)). Since it may happen that the transmitter gets a new task while it is still busy
with the previous one, at first the new task is queued in a linked list by executing the macro
APPEND_TO_LIST (…). Then the appropriate action corresponding to the current state of the
transmitter is executed.

Event State Table

The event state combinations are grouped in an event state table; only for clarity’s sake this table
is divided into two parts. The first part shows the event caused by the application: TX_FRAME.
Different states corresponds to different lines, the event is represented by the column. Each
element of the table includes the appropriate action and the subsequence transmitter state of a
certain event-state combination.

ITD04279

StartAdmaChan(dmaMsg)

RFO_INTERRUPT

CMDR_RHR

DdskSendMsg(error)

*

SAB 82532

Semiconductor Group 28

(*1) READY is only be taken on if the transmit queue is empty. Otherwise the next frame will be
transmitted and the state will be unchanged.

The actions are grouped in a field of function pointers, called TxAction […] […]. At first during the
initialization TxAction […] […] is set to NoAction for all elements of the array. Then, corresponding
to the table the appropriate action is entered, for example:

…
TxAction [IDLE] [XPR_INTERRUPT] = SetReady;

TX_FRAME

SENDING NoAction (…)
SENDING

READY TxFrame (…)
SENDING

IDLE NoAction (…)
IDLE

XPR_INTERRUPT XDU_INTERRUPT

SENDING ServeNextFrame (…)
READY (*1)

ServeXdu (…)
IDLE

READY NoAction (…)
READY

NoAction (…)
IDLE

IDLE SetReady (…)
READY

NoAction (…)
IDLE

*

SAB 82532

Semiconductor Group 29

Figure 16
Transmitter – Finite State Machine

Finite State Machine

Since the transmitter is realized as a finite state machine – corresponding to the event state table
discussed before – the transmitter is always in a specific state at every instant of time. From each
state there are transitions to other states. Transitions occur when some event takes place. Every
event causes a certain action. Figure 16 shows the finite state machine.

SDL-Diagrams

At the end of this section the SDL-diagrams for the transmitter are presented. They provide a brief
overview of the transmitter’s actions.

ITD04280

SEND_FRAME

XPR_INTERRUPT
SetReady)

SENDING

(

IDLE

READY

(TxFrame)(ServeNextFrame)
XPR_INTERRUPT no further frame

further frameXPR_INTERRUPT
ServeNextFrame)((ServeXdu)

XDU_INTERRUPT

*

SAB 82532

Semiconductor Group 30

Figure 17
Transmitter Service Functions: TxFrame (), ServeXdu ()

ITD04281

Length-1,DMA_MODE

StartAdmaChan(msg)

SEND_FRAME

READY

CMDR_XTF

SENDING

XBC

ITD04283

XDU_INTERRUPT

ErrMsg(ID_TX_DATA_UNDERRUN)

SENDING

CMDR_XRES

SENDING
*

SAB 82532

Semiconductor Group 31

Figure 18
Transmitter Service Function: SetReady ()

ITD04282

XPR_INTERRUPT

READY

IDLE

*

SAB 82532

Semiconductor Group 32

Figure 19
Transmitter Service Function: ServeNextFrame ()

4.4 Data Structure of the ESCC2-Device Driver Module

Since the ESCC2-device has two symmetrical channels operating independently, two data links can
be supported. These data links are controlled by a number of parameters grouped in two structures
of the type DATA_LINK_CTRL (see ESCC2.H), one for each channel. These are the fundamental
data structures the ESCC2-device driver module is based on.

ITD04284

Length-1,DMA_MODE

StartAdmaChan(head)

XPR_INTERRUPT

SENDING

CMDR_XTF

SENDING

NextFrame = Head
FRAME_RELEASE(head)
Head = NextFrame

Head
No Yes

READY

 Next

 XBC

*

SAB 82532

Semiconductor Group 33

Detailed description of the elements:

ESCC2_REG_MAP* Escc2: The first problem when programming the ESCC2 is the access to its
registers. For the sake of clarity the registers are grouped in structures of registers, depending on
the mode (HDLC, ASYNC or BISYNC) and depending on the kind of access (READ or WRITE). The
offset of a single register in this structure corresponds to the register address (A0 … A6).

typedef struct

{

WORD16 fifo [16]; /* RFIFO */
WORD8 star; /* Status Register */
WORD8 rsta; /* Receive Status Reg. */
WORD8 mode; /* Mode Register */
WORD8 timr; /* Timer Register */
WORD8 xad1; /*Transmit Address */

.

.

.

WORD8 gis; /* Global Int. Status */
WORD8 ipc; /* Interrupt Port Conf. */
WORD8 isr0; /* Interrupt Status 0 */
WORD8 isr1; /* Interrupt Status 1 */
WORD8 pvr; /* Port Value Register */
WORD8 pis; /* Port Interrupt Status */
WORD8 pcr; /* Port Conf. Reg. */
WORD8 not_used_9;

}

HDLC_MODE_READ;

Since the registers in the different modes and for different kinds of access share the same address
region, these structures are combined in a union type definition, called ESCC2_REG_MAP.

typedef union

{

HDLC_MODE_READ Hdlc_Rd;
HDLC_MODE_WRITE Hdlc_Wr;
ASYNC_MODE_READ Async_Rd;
ASYNC_MODE_WRITE Async_Wr;
BISYNC_MODE_READ Bisync_Rd;
BISYNC_MODE_WRITE Bisync_Wr;

}

ESCC2_REG_MAP;

*

SAB 82532

Semiconductor Group 34

In the application on hand only the register set for HDLC-mode is used. Now that the relative
locations (= offsets) of the single registers are known for different modes and kinds of access, the
base address of this total register map can be defined. Seeing that the ESCC2 is a data
communication device with two symmetrical serial channels using different memory regions each
control structure has its own base address. These addresses are initialized during the Escc2Init (…)
routine. One gets the base address of the device in memory by executing DdshGetDeviceAddress
(device). Assuming that the ESCC2 corresponds to DEVICE1 the following statements are
executed in Escc2Init (…):

.

.

ESCC2_REG_MAP* base;
.
.

base = DdshGetDeviceAddress (DEVICE1);
DataLinkCtrl [ESCC2_CH_A].ESCC2 = base;
base = (ESCC2_REG_Map far*)

(((WORD32) base) + 0x40);
DataLinkCtrl [ESCC2_CH_B].ESCC2 = base;

.

.

int ChID: The channel identification ChID conforms to the index of the actual data link control
structure (DataLinkCtrl [index].ChID = index).

.

Dlc = & DataLinkCtrl [command → Entity];
Dlc → ChId = command → Entity;
Dlc → Source = command → Src;

.

.

WORD8 Source: Since there may be different sources requesting a data link performed by the
ESCC2 the data link control structure contains an element called Source. Keeping in mind the
actual Source, the ESCC2-module is able to send the messages to the proper destination (e.g.
protocol modules, LAPD or other application modules, HSHFR).

.

.

Dlc → message → Entity = Dlc → ChID;
Dlc → message → Dest = Dlc → Source;
Dlc → message → Src = ESCC2_MODULE;
…
DdskSendMsg (Dlc → message);

.

.

*

SAB 82532

Semiconductor Group 35

CIM_MSG_DESCR_PTR dmaRcMessage: Before an ESCC2-channel receives a frame, a
message buffer has to be allocated for the DMA-controller; dmaRcMessage is the pointer to the
channel’s current receive message buffer.

.

.

Dlc → dmaRcMessage = DdsmMsgBufAlloc (maxSize);
if (!Dlc → dmaRcMessage)

{

Dlc → ESCC2 → Hdlc_Wr.cmdr = CMDR_RHR;
return;

}

…

CIM_MSG_DESCR_PTR message: Assuming that an ESCC2-channel has received the end of a
frame, the pointer dmaRcMessage of the message buffer allocated before is buffered in message
for subsequent handling. At the same time a further buffer (dmaRcMessage) is allocated for the
DMA-controller to receive subsequent frames.

CIM_MSG_DESCR_PTR head: Both channels use linked lists to store frames for transmission.
These linked lists are first-in first-out queues, frames are added at the tail and taken away from the
head. So head points to the item which will be taken away as the next one. Tail points to the item
which was added as the last one. Tail is controlled by sending frames to the ESCC2-channel; head
is controlled by the XPR-interrupt service routine.

CIM_MSG_DESCR_PTR tail: See CIM_MSG_DESCR_PTR head.

int TxState: The serial interface of the ESCC2 consists of two full duplex channels. So both
channels are able to transmit data at the same time. Normally a transmit procedure consists of a
transmit request (generated by the application), a DMA-transfer and finally an XPR-interrupt
generated by the ESCC2-device; in this case various states are be taken on. The current states are
stored in TxState.

4.5 ADMA-Device Driver Module

As described in section 4.1 the ADMA-device driver module provides nine service routines to
control the ADMA-device and the data transfer:

● InitAdmaDevice (…)

● InitAdmaChan0 (…)

● InitAdmaChan1 (…)

● InitAdmaChan2 (…)

● InitAdmaChan3 (…)

● StartAdmaChan0 (…)

● StartAdmaChan1 (…)

● StartAdmaChan2 (…)

● StartAdmaChan3 (…)

*

SAB 82532

Semiconductor Group 36

Since the DMA-channels 0 and 1 or DMA-channels 2 and 3 provide the same services (ADMA 0/1
<–> receiver of ESCC2-channel A/B; ADMA 2/3 <–> transmitter of ESCC2-channel A/B; the
description can be reduced to five functions which are described in more detail in the following:

InitAdmaDevice (CIM_MSG_DESCR_PTR command) initializes the ADMA-device as well as the
local data. The base device address is set by executing DdshGetDeviceAddr (DEVICE2). The
addresses of the channel specific registers are evaluated using the base device address and
appropriate offsets. Similar to the ESCC2-module the registers are grouped in data structures:
ADMA_GEN_REGS (ADMA-General Registers) and ADMA_CHAN_REGS (ADMA-Channel
Registers).

By programming the General Mode Register of the ADMA the operating mode is selected. In the
application on hand local mode is selected; furthermore the physical bus width is set to 16 bit, all
interrupts are masked and rotating priorities are programmed. No limit is programmed for
continuous bus cycle; the General Delay Register is set to 0. So no limit is set to the extent the
ADMA can load the bus.

InitAdmaChan0 (CIM_MSG_DESCR_PTR command) initializes the channel program for ADMA-
channel 0 consisting of two command blocks.

There are two basic types of channel commands:

– type 1 channel commands for data transfers and
– type 2 channel commands for command chaining control.

A complete channel program consists of at least two channel command blocks, one with a type 1
command and one with a type 2 command. So the data structure chan0Program (ADMA channel 0
Program) contains the two elements cB1ST1 (command block 1 of short type 1) and cB2T2
(command block 2 of type 2) (see figure 20).

cB1ST1 specifies the actual data transfer operation and contains parameters such as source
pointer, destination pointer, byte count, etc… cB2T2 specifies the control operations of the channel,
as for example channel stop operations.

ADMA-channel 0 serves the DMA-requests of the receiver of ESCC2-channel A. Initializing the
corresponding channel program the following settings are defined:

– the data transfer is source synchronized,

– data is transferred in words,

– the destination pointer has to be incremented,

– the source/destination pointer resides in the memory space,

– RFIFO of channel A is source,

– there is a maximum length of frame buffer.

cB2T2 completes the channel program with a conditional stop, if byte count is reached.

*

SAB 82532

Semiconductor Group 37

Figure 20
Simplest Channel Program

At the end of the routine InitAdmaChan0 (…) the address of channel program is buffered.

InitAdmaChan1 (CIM_MSG_DESCR_PTR command) is very similar to InitAdmaChan0 (…), with
the following differences:

– the data transfer is destination synchronized,

– the source pointer has to be incremented,

– XFIFO of channel A is destination.

StartAdmaChan0 (CIM_MSG_DESCR_PTR command) enters the destination pointer to the
corresponding parameter of cB1ST1 in chan0Program and sets the address of the channel program
to the corresponding Command Pointer Register. Then the channel program is started by
programming the General Command Register appropriately.

StartAdmaChan1 (CIM_MSG_DESCR_PTR command) enters the source pointer to the
corresponding parameter of cB1ST1 in chan1Program and sets the address of the channel program
to the corresponding Command Pointer Register. Then the channel program is started by
programming the General Command Register appropriately.

The service routines InitAdmaChan0/1/2/3 (…) are executed once during the initialization of the
data link; the short routines StartAdmaChan0/1/2/3 (…), however, are executed every time a frame
has been received or has to be transmitted.

4.6 Software Workaround for Single-Cycle Mode

As mentioned in section 2.2 a problem arises when ADMA and ESCC2 operate in single cycle
mode. Since the trailing edge of the DRRn (Receiver DMA-Request) is received late, a continuous
request is assumed and the ADMA executes an unwanted transfer.

This failure occurs every time when the RFIFO is read by the DMA-controller; so for frames shorter
or equal to 32 bytes a further byte/word is transferred at the end of the frame. For frames longer than
32 bytes additionally every 32 bytes one spurious byte/word is transferred (see figure 21).

ITD04285

On-Chip

in Memory

Channel
Program

Parameter

Type 2 Command

Channel Status

Byte Count

Dest. Pointer

Source Pointer

Type 1 Command

Command Pointer

*

SAB 82532

Semiconductor Group 38

Since the trailing edge of DRRn cannot be used to terminate the DMA-transfer in time the software
workaround starts from the idea to control the DMA-transfer by byte counter. The DMA-controller
provides a feature called data chaining, which allows to transfer data to predefined locations until
the byte counter reaches 0 (see figure 22).

Figure 21
Spurious Transfers

In the application at hand the predefined locations can be organized continguously in memory and
the byte counter should correspond to the FIFO-length of 32 bytes. After transferring 32 bytes the
ADMA stops data transfer due to byte count end and reads the following data chain list element from
memory containing the next data pointer and byte counter. During this time the ESCC2 resets the
DRRn-signal and no spurious data transfer will occur. Using this method the additional transfer
every 32 bytes of one byte/word can be avoided. At the end of a frame with n bytes (n mod 32 is not
equal to 0), however, one additional transfer is unavoidable. Regarding this failure the data buffer
must be greater than the maximum receive length; finally the real length of the frame received can
be evaluated from the RBC-register during the ServeRme() routine.

ITD04286

Spurious Data (byte/word)

Long Frames

Short Frames

32 Bytes

32 Bytes 32 Bytes 32 Bytes 32 Bytes

*

SAB 82532

Semiconductor Group 39

Figure 22
Data Chaining

ITD04287

On-Chip

in Memory

Channel
Program

Parameter

Type 2 Command

Channel Status

Not Used

Not Used

Chain List Pointer

Type 1 Command

Command Pointer

Byte Count = FIFO_SIZE

Data Pointer

0 (end of list)

Data Pointer

Data Pointer

Overhead

32 Bytes

32 Bytes

32 Bytes

Dlc dmaRcMessage

Byte Count = FIFO_SIZE

Byte Count = FIFO_SIZE

Byte Count = FIFO_SIZE

*

SAB 82532

Semiconductor Group 40

5 The Application Module HSHFR

The application module HSHFR contains an high speed HDLC-frame relay. The function of this
application is very simple: Frames received on ESCC2-channel A are transmitted via ESCC2-
channel B and vice versa.

5.1 Structure of the Application Module

Depending on the specific application, all modules used are integrated by executing DdsIntegrate()
(Refer to chapter 3.2). DdsIntegrate() sets the message entry points of the modules which are
necessary to run the application. The message entry points are set by executing
DdskSetMsgEntryPoint (INT16 module, MSG_FCT_PTRmsg_entry).

The application at hand sets the message entry points to the ESCC2-device driver module and to
the application module HSHFR itself. After the Device Driver System (DDS) has executed
DdsIntegrate() all modules are initialized by the DDS (Escc2Init(), HshfrInt()).

5.2 Detailed Description of the Application Module

In addition to the function DdsIntegrate() and the message entry point HshfrMsgEntry
(CIM_MSG_DESCR_PTR command) the application module contains two routines, which initialize
the module or perform the relay switch of the frames: HshfrInit (…) and HshfrRcFrameOk (…).

HshfrInit (CIM_MSG_DESCR_PTR command) sends messages to the ESCC2-device driver
module to initialize the data links (ID = INIT_DATA_LINK) and to assign the appropriate address
(ID = ASSIGN_ADDRESS). The channel identification (Entity), receive mode (P1) and clock mode
(P2) are passed as elements of the message. After the initialization the application module receives
messages from the ESCC2-device driver whenever a frame has been received.

One message ID is supported:
RC_HDLC_FRAME_ESCC2_OK.

If a HDLC-frame has been received the function HshfrRcFrameOk (CIM_MSG_DESCR_PTR cmd)
is executed.

HshfrRcFrameOk (…): All HDLC-frames received on one channel (e.g. ESCC2-channel A) are
sent transparently in HDLC-mode on the other channel (e.g. ESCC2-channel B) or vice versa.

*

SAB 82532

Semiconductor Group 41

6 Performance of the System

Discussing the performance of the system a very important question is how much time tapplic remains
to run an application compared to the time tdata which is necessary to organize and execute a data
transfer. These times are summarized in the total bus time tbus:

tbus = tdata + tapplic (1)

6.1 Time for Data Handling

Assuming that the application is performed only by the microcontroller SAB 80C166 and the data
handling is executed by the microcontroller as well as by the DMA-controller ADMA one gets the
following equations for tdata and tapplic:

tdata (n) = + (n)

+ (d) + (2)

tapplic = (3)

n = frame length in number of bytes;

d = direction rx/tx;

: Setup time of ADMA after being started by the microcontroller.

 (n): Time to transfer data including bus arbitration; this time depends on the frame
length.

 (d): Time to organize the data transfer (list linking, buffer allocation, interrupt
handling, programming the devices, …) in the device driver module; this time
depends on the direction (transmit/receive).

 : Time to route a received frame from the device driver module to the
application module or the frame which has to be transmitted from the
application module to the device driver module.

t
setup
ADMA t

transfer
ADMA

t
DDM
‘166 t

DDS
‘166

t
applic
‘166

t
setup
ADMA

t
transfer
ADMA

t
DDM
‘166

t
DDS
‘166

*

SAB 82532

Semiconductor Group 42

The following times have been measured:

: Arbitration time from DMA-request to first transfer cycle (without code prefetch:
setup time).

: Time to transfer one byte/word (8/16-bit access) in two cycle mode.

Especially the time used by the SAB 80C166 depends on the microcontroller itself, the specific
application and the way how the software is realized. For the sake of simplifying the discussion

 is taken as the maximum of the time used for receive or transmit direction:

= MAX ((rx), (tx))

= (tx)

The transfer time (n) is calculated as:

 (n) = × Ttransfer + trest (5)

f f

25 MHz 40 MHz

33 × 2.64 µs

10.5 × 840 ns

4 × 320 ns

(tx)
6 × 103 ×

 300 µs

(rx)
5.36 × 103 ×

 268 µs

7 × 102 × 35 µs

ext
ADMA

ext
‘166

t
setup
ADMA 2

f ext
ADMA

t
arb
ADMA 2

f ext
ADMA

t cyc
ADMA 2

f ext
ADMA

t
DDM
‘166 2

f ext
‘166

t
DDM
‘166 2

f ext
‘166

t ‘166
DDS

2

f ext
‘166

t arb
ADMA

t cyc
ADMA

t
DDM
‘166

t
DDM
‘166 t

DDM
‘166 t

DDM
‘166

t
DDM
‘166

t
transfer
ADMA

t
transfer
ADMA n

32

*

SAB 82532

Semiconductor Group 43

where Ttransfer = + (32)16 × is the time to transfer a 32-byte pool of data using
(8-bit) 16-bit access; n/32 is the quotient (number of 32-byte pools to be transferred) and n
mod 32 is the remainder.

If n mod 32 = 0 trest = 0, if not up to 31 bytes have to be transferred at the end of a frame.
The time for the transfer of up to 31 bytes trest is calculated by summarizing the time for bus
arbitration tarb after DMA-request and the number of data transfer cycle times tcyc using
(8-bit) 16-bit access:

Figure 23
Transfer Time as a Part of the Time Used for Data Handling n = 32 Bytes

trest = tarb + × tcyc (4)

The figures 23-25 represent how the time tdata (100 %) is divided up depending on the frame length.
They show that the time to transfer frames of length equal to or shorter than 32 bytes is negligible
compared to the time for organizing the data handling in the device driver module. Independent of
the frame length, the setup time of the ADMA is negligible. One gets the following equation
for tdata (n):

tdata (n) ≈ Ttransfer + +

Torg = +

t arb
ADMA t cyc

ADMA

ITD04307

n = 32 Bytes

t
DDM
’166

t ’166
DDS

setup
ADMAt

transfer
ADMAt (32)

n mod 32

(1) 2

t
setup
ADMA

n
32

t
DDM
‘166 t ‘166

DDS

t
DDM
‘166 t ‘166

DDS

*

SAB 82532

Semiconductor Group 44

Figure 24
Transfer Time as a Part of the Time Used for Data Handling n = 480 Bytes

Figure 25
Transfer Time as a Part of the Time Used for Data Handling n = 4096 Bytes

Torg is the time to organize the data transfer in the device driver module and to route the frames from
the DDM to the APM and vice versa. As mentioned above this time depends on the microcontroller,
the specific application and the way how the software is realized.

ITD04308

n = 480 Bytes

t
DDM
’166

t ’166
DDS

setup
ADMAt

transfer
ADMAt (480)

ITD04309

n = 4096 Bytes

t
DDM
’166

t ’166
DDS

setup
ADMAt

transfer
ADMAt (4096)

*

SAB 82532

Semiconductor Group 45

6.2 Bit Rate and Frame Rate

The correspondence between bit rate and frame rate on the one hand and bus load on the other
hand is present in figures 26/27. Figure 26 shows the maximum bit rate the ADMA is able to cope,
when DMA-transfers are requested back-to-back without delay:

 =

Using 25-MHz clock and 16-bit access the rate is 42.7 Mbit/s. Dividing up this performance on four
DMA-channels the ADMA is able to transfer data for two bidirectional ESCC2-channel, each
operating at a bit rate of 10 Mbit/s. This transfer rate has been tested successfully in the system
implemented.

Figure 26
Maximum Bit Rate

Figure 27
Maximum Frame Rate

The frame rate can be calculated as:

rframe =

r
bit,max
ADMA 32 bytes

Ttransfer

ITD04288

Frame m

Bit k
FO

Frame (m+1)

Bit k+32
FΙ

*Tn/32 transfer orgT

...

ITD04289

Frame m
FO

Frame (m+1)
FΙ

*Tn/32 transfer orgT+ TRMC

...

1

 × Ttransfer + TOrg
n
32

*

SAB 82532

Semiconductor Group 46

Regarding figure 27 the following condition has to be considered when calculating the maximum
frame rate. For bit rate less than the maximum bit rate the CPU is able to perform organizational
processing between the data transfers. To avoid loosing data or even a complete frame in this case
because of a receive data overflow or a receive frame overflow the next frame should not arrive till
the microcontroller has set the RMC-command after an RME-interrupt event. Let us call the time
from RME-interrupt to the RMC-command TRMC, this time is a part of Torg and consists of reading the
RBC-register of the ESCC2, allocating a data buffer for the next frame, preparing and starting the
ADMA-channel program and setting the RMC-command to the ESCC2. If we assumed back-to-
back frames with shared flags (worst case) then since the flow of data is constant the same time
TRMC has to exist between end of DMA-transfer of every pool of 32 byte and the beginning of the
following pool.

So the frame rate is given by the following equation (n > 32):

rframe, max ≤

The corresponding bit rate for continuous frame transfer and maximum frame rate is (ADMA:
25 MHz, 16-bit access; 80C166: 40 MHz; TRMC = 190 µs):

rbit ≤ = 1.3

Obviously the bottleneck for continuous frame transmission is the time TRMC. Again it has to be
considered that the time TRMC depends on the microcontroller, the specific application and the way
of software realization. To guarantee continuous frame transmission with 10 Mbit/s TRMC would have
to be equal or shorter than 19.6 µs.

The main part of the time TRMC is used for converting addresses from 80C166 mode into ADMA-
mode. This has to be done every time a pointer is written to the ADMA’s-registers or channel
program.

To reduce the time for address converting it is recommended to introduce predefined linked list,
which contain pointers in 80C166 mode as well as in ADMA-mode. In this case TRMC can be reduced
by nearly 65 %. This method reduces the time for organizational processing and allows a higher
frame rate.

1

 × (TRMC + Ttransfer)
n
32

32 × 8 bit
TRMC + Ttransfer

Mbit
s *

SAB 82532

Semiconductor Group 47

6.3 Time for Application

Up to now the performance is analyzed without considering the time for the execution of
applications.

Going back to equation (1) for tapplic one gets the relative part of the total bus time in the following
manner:

tapplic = tbus – tdata

Given a frame rate of rframe the time to organize and execute the data transfer over the parallel bus

is × Ttransfer + Torg. This leaves a bus capacity for running the application equal tapplic per frame:

tapplic = – (× T transfer + T org)

In the figure 28 the time for application is depicted for several frame lengths and frame rates.

Example: tapplic = 100 µs (free bus capacity per frame) remains to run an application for one frame
(e.g. LAN-frame) with a length of 480 bytes (n/32 = 15) and a frame rate of nearly 2000 frames/s.

n
32

1
r frame

n
32

*

SAB 82532

Semiconductor Group 48

6.4 Performance Improvements

In chapter 5.2 it has been shown that the ADMA (normal mode, 16-bit access, two cycle mode) is
able to cope the maximum bit rate of the ESCC2 (2 bidirectional channels, 10 Mbit/s). The
bottleneck is the bus load used by the microcontroller for data handling. To reduce the time used by
the CPU another microprocessor can be used or the software has to be realized appropriately
(linked list to avoid pointer conversions).

To improve the data transfer and therefore to reduce the bus load caused by the ADMA one can
operate in single-cycle mode. This transfer mode is described in chapter 2. Corresponding to the
software work around described in chapter 3 one can achieve an performance improvement of
nearly 30 % regarding only the data transfer.

Figure 28
Free Bus Capacity per Frame

ITD04290

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

200

400

600

800

1000

1200

Number of Frames (*1000)/s

81532=128 2
n

32

Fr
am

e
Bu

s
C

ap
ac

ity

s/Frameµ

*

SAB 82532

Semiconductor Group 49

7 Device Driver System

This chapter gives an overview about the system software used to implement the application
specific software modules. This Device Driver System (DDS) provides a simple fundamental
platform for the integration of Device Driver Modules (DDMs) and application Program Modules
(APMs).

Because of its reduced complexity and its high degree of portability it is possible to concentrate on
the main issues related to writing device driver code for the Enhanced Serial Communication
Controller (ESCC2) from Siemens.

7.1 Overview

The basic concept of the device driver system relies on the transfer of messages between DDMs
and APMs. A DDM contains the low level device driver functions, including the interrupt service
routines, which must fulfill individual real-time constraints. As opposed to the DDM an APM
combines the more intelligent time consuming data (message) processing functions. The general
concept is shown in figure 29.

Figure 29
Device Driver System Concept

ITS04311

APM APM

CIMAPI

APM APM DDMDDM

DDSU
DDSHX

C/I-Messages

Device Driver System

PC

DDSU := Device Driver System User Interface
Device Driver System Hardware Adaption=:DDSH
Application Program Module=:APM
Device Driver Module=:DDM
C/I-Message Application Program Interface=:CIMAPI

SAB 80C166 Coprocessor
*

SAB 82532

Semiconductor Group 50

The device driver system maintains a unique data structure, the Command/Indication-message
(C/I-message) to transfer information between the different APMs and DDMs. The standard format
is depicted in figure 30.

The device driver system itself provides all services necessary to build a high performance
communication system. The main tasks are summarized below:

● Initial Hardware Initialization
● Initial Software Initialization
● Main Program Control
● Message Routing
● Message Buffer Management
● Timer Management
● System Control
● User Interface

Figure 30
C/I-Message Format

ITD04310

Next
SigByte
Type
Dest
Src
Entity
ID
DSize
DPtr

Message
Descriptor

Data
Buffer

*

SAB 82532

Semiconductor Group 51

7.2 General Module Architecture

A module to be integrated into the device driver system’s environment must fulfill only a minimum
set of requirements. The figure below illustrates the basic architecture of a device driver module.

First of all a module, a Device Driver Module (DDM) or an Application Program Module (APM), must
have one general function to be used as message entry point. In addition to that, a DDM has to
assign and initialize its interrupt entry point and the corresponding modes. When the whole system
is started, the device driver system sends an initial C/I-message (INIT_MODULE) to every module.
This allows every module to establish its own context, initialize its data structures and if necessary
the related devices. Following this initialization an integrated module can receive C/I-messages,
which are decoded inside the module. Additional service functions, described in section 6.5, are
needed inside a module (e.g.: to request and send C/I-messages, en-/disable interrupts, …).

Figure 31
General Module Architecture

ITS04312

API Functions Device Driver System

DdskSetMsgEntry
DdskSendMsg
DdskRejectMsg
DdsmMsgBufAlloc
DdsmMsgBufFree
DdshSetHwIntVect
DdshIntCtrl
DdshIntSetMode
DdshGetDevAddr
MoveWords
ENTERNOINT
LEAVENOINT
INTRET

Msg Entry Point

Service
Function Structure

Data

INT Entry Point

Hardware
SIEMENS Communication ICs
(ESCC2)

Device
Driver
Module

*

SAB 82532

Semiconductor Group 52

7.3 Integration of Modules

To integrate individual modules into the device driver system’s environment one of the modules
must have the unique function DdsIntegrate. This generic function is called during the system
start-up phase. Its purpose is to assign the message entry points for the application program and
device driver modules by means of the service function DdskSetMsgEntry.

7.4 The Example HSHFR

The application example described in this document has been implemented on a PC-coprocessor
bord using the new 16-bit microcontroller 80C166 from Siemens.

A functional block diagram of the complete example is shown in figure 32.

Figure 32
Structure of Relay Software

To concentrate on the device driver software and the application of the ESCC2 with ADMA in a
communication system, only a minimum interface to the device driver system and the hardware
specific adaptions (see section 6.5 and Appendix C) are described in more detail.

Because the PC-user interface is highly specialized and used only for the downloading of the
run-time software onto the PC-board it is not described here. No timer functions are required in this
application, so they are omitted as well.

The following figure 33 shows the information flow inside the whole communication subsystem,
especially how the different software layers (modules) are involved. The routing from channel A to
channel B is illustrated, assuming an incoming HDLC-frame. The ESCC2-device driver module
handles the RME-interrupt (see chapter 3), and translates the complete received HDLC-frame into
a corresponding C/I-message. All C/I-messages are inserted into a single message queue,
maintained by the device driver system’s kernel. The kernel routes all messages to the appropriate

ITB04313

HSHFR ADMA Device ESCC2 Device
A

B

HDLC

HDLC

Device Driver System (DDS)
X

ESCC2, ADMA + SAB 80C166

*

SAB 82532

Semiconductor Group 53

destination module. The C/I-message RC_HDLC_FRAME_OK for instance, related to an incoming
HDLC-frame via ESCC2-channel A, is routed to the HSHFR-module. The HSHFR-module reacts by
routing the frame received on channel A to channel B and sending a SEND_FRAME message to the
ESCC2-device driver module. One element of the C/I-message, the parameter entity (see
figure 32), determines the ESCC2-channel to be used for transmission and the source for a
received frame.

The data buffer of the routed C/I-message remains the same (DPtr; for more details refer to
chapter 4).

Figure 33
Information Flow from Channel A to Channel B

ITD04314

APMHSHFR

C/I-Messages DDS

ESCC2, ADMA DDM

RC_HDLC_FRAME_OK

SEND_FRAME

DMA DMARME XPR

ChA ChB

F CRC Data F FDataCRCF

ESCC2, ADMA

(ChA)

(ChB)

SEND_FRAME (ChB)

(ChA)RC_HDLC_FRAME_OK

~ ~

~ ~ ~~

~~

*

SAB 82532

Semiconductor Group 54

7.5 Application Program Interface

The following description briefly explains the main purpose of the device driver system’s service
functions and how they are called in C. No distinction between functions realized in C and in
assembly code is made on this level. The corresponding function prototypes, macro definitions,
typedefs and defines are included either in the header file DDSG.H or DDSH.H.

All hardware specific functions and macros belonging to the individual processor system (e.g.:
processor type, memory layout, …) are combined in one system module DDSH, which is available
in source code (see Appendix C). To transfer the device driver source code to a another processor
system the main work consists in modifying the functions and macros in the DDSH-module so that
they fit into the new system.

Moreover you will find definitions concerning the C/I-messages in the MSG.H file, like module and
message IDs and related parameters (see also Appendix C).

DdskSetMsgEntry (int destId, (*msgEntryFctPtr) ());

Writes the pointer to the module entry function msgEntryFctPtr in the device driver system’s
message routing table in dependance of the module destination identifier destId.

DdskSendMsg (CIM_MSG_DESCR_PTR ciMsg);

Puts a C/I-message ciMsg into the device driver system’s central message queue. A module which
wants to send a message to another module calls this function with a pointer to the previously
prepared message buffer. This message buffer can be requested from the buffer management by
means of the function DdsmMsgBufAlloc (see below). As a minimum the C/I-message must contain
the destination ID of the addressed module, its own source ID and the message ID itself. In addition
to that, the data buffer must be filled with the appropriate information, if any. The C/I-message
format and the corresponding structure CIM_MSG_DESCR_PTR are specified in the source file
DDSG.H (see Appendix C).

DdskRejectMsg (CIM_MSG_DESCR_PTR ciMsg, int reason);

In case a C/I-message ciMsg just received contains wrong information, it may be rejected by means
of this function. The value reason may be used to signal why this message has been rejected.

ciMsg = DdsmMsgBufAlloc (int size); CIM_MSG_DESCR_PTR ciMsg;

Returns a pointer ciMsg to the next available C/I-message buffer with a data buffer assigned to it,
depending on the parameter size. When there is no message buffer available, a NULL pointer will
be returned instead.

DdsmMsgBufFree (CIM_MSG_DESCR_PTR ciMsg);

Releases a previously allocated C/I-message buffer referenced by the pointer ciMsg.

DdshSetHWintVect (HW_INT_TYPE intx, INT_FCT_PTR intFct);

Installs an interrupt frame function, which calls the specified interrupt function intFct. The interrupt
frame is initialized in the system module DDSH, which is dependant on the processor type (e.g.:
80C166).

DdshIntCtrl (HW_INT_TYPE intx, BOOL enable);

Enables or disables an individual interrupt source.

*

SAB 82532

Semiconductor Group 55

DdshIntSetMode (HW_INT_TYPE intx, INT_MODE_TYPE mode);

Sets interrupt mode. In this application only device 1 and mode 1 is supported. Mode 1 means for
the 80C166 that the interrupt is triggered on positive external transitions on pin CC1IO.

devAddr = DdshGetDevAddr (DEVICE_TYPE dev); WORD32 devAddr;

Returns the base address devAddr of the specfied device dev. Only device 1 is supported in this
application.

MoveWords (W16PTR srcPtr, W16PTR destPtr, WORD byteCnt);

Optimized procedure for a fast transfer of a memory block with the specified length byteCnt from
source address srcPtr to the destination address destPtr.

ENTERNOINT (WORD cpuState);

Is a special macro defined in DDSH. Disables temporarily all interrupts. The current CPU-state is
stored in cpuState. This allows nesting of interrupts in conjunction with macro LEAVENOINT.

LEAVENOINT (WORD cpuState);

Is a special macro defined in DDSH. Restores the old CPU-state by means of the variable cpuState.
It puts a previously interrupted program state back the way it was before ENTERNOINT was called.
This allows nesting of interrupts in conjunction with macro ENTERNOINT.

INTRET
Is a special macro defined in DDSH. It releases the interrupt logic of the corresponding interrupt line.
This is necessary to allow the interrupt controller to accept interrupts. Should be called whenever an
interrupt routine is left.

*

SAB 82532

Semiconductor Group 56

8 Appendix

8.1 Appendix A

PC-Host Bus

ITS04324

J 1

B1
B2
B3
B4
B5
B6
B7
B8
B9
B10
B11
B12
B13
B14
B15
B16
B17
B18
B19
B20
B21
B22
B23
B24
B25
B26
B27
B28
B29
B30
B31

1A
A 2
A 3
A 4
A 5
A 6
A 7
A 8
A 9

A 10
A 11
A 12
A 13
A 14
A 15
A 16
A 17
A 18
A 19
A 20
A 21
A 22
A 23
A 24
A 25
A 26
A 27
A 28
A 29
A 30
A 31

IOCHCK
D 7
D 6
D 5
D 4
D 3
D 2
D 1
D 0
ID_CH_RDY
AEN
ADDR19 H_A 19

H_AADDR18
H_AADDR17
H_AADDR16
H_AADDR15
H_AADDR14
H_AADDR13
H_AADDR12
H_AADDR11
H_AADDR10
H_AADDR 9
H_AADDR 8
H_AADDR 7
H_AADDR 6
H_AADDR 5
H_AADDR 4
H_AADDR 3
H_AADDR 2
H_AADDR 1
H_AADDR 0 0

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

7
6
5
4
3
2
1
0H_D

H_D
H_D
H_D
H_D
H_D
H_D
H_D

GND
RESETDRV

V+5
IRQ2
-5 V
DRQ2

V-12
DWS
+12 V
GND
MEMW
MEMR
IOW
IOR
DACK
DRQ3

3

1
1DRQ

DACK

DACK0
CLK
IRQ7
IRQ6
IRQ5
IRQ4
IRQ3
DACK2
TC
ALE
+5 V
OSC
GND

GND SSV

IBM Con

2 1

A4U

04HCT74
1 k Ω

R1

C1
1 nF

GND

+5VCCVVDD

SW1

GND

3

U1A

&

HC74 08

2

1

+5 V

R2
10 Ωk

4

5

0874 HC

&

B1U

6

PC Edge Connector
CPU Reset

3 2

126HCT74

6 5

1

4
74 HCT126

U 2A

U 2B

HIOW
HMEMR
HMEMW

(0...7)

HIORDY
HAEN

H_D

H_A (0...19)

SWRST
RST

IRQ3EN

HINTR

IRQSEN

89

GNDGND

U 2 C
74 HCT 126

10

13

126HCT74
D2U

GND GND

12 11

1=

A3U
1

2
3

74 HCT32

GND

*

SAB 82532

Semiconductor Group 57

Main Block Diagram

H_A (0...19)

H_D (0...7)
H_A (0...19)
H_D (0...7)

HMEMR
HMEMW

HIOW

HIORDY
HAEN

HINTR
SWRST

RST

IRQ5EN
IRQ3EN

H_A (0...19)
H_D (0...7)
HMEMR
HMEMW
HIOW
HAEN
DPBSY
RST
SWRST
HINTR
IRQ3EN
IRQ5EN

PC_D (0...7)
PC_A (0...19)

PC_RD
PC_WR
PC_CE
HINTR

DPBSY
RST

Transceivers,
Latches ...

PC Bus InterfacePC Bus

Connector
IBM

PC Interface Unit

H_A (0...19)

H_D (0...7)
a)

b)DACK (A,B)

DR (A,B)

ADDR (0...17)

DATA (0...15)

RSTOUT

RBUSY

DPINT

RST

ALE

EPROM

SR_O

SR_E

DP_E

P_CS_1

P_CS_0

DP_O

RD

WR

NMI

P2. (0...15)

P3. (0...15)

P5. (0...9)

P3.33

c)

RBUSY
DPINT
NMI
RST

ADDR (0...17)
DATA (0...15)

P2. (0...15)
P3. (0...15)
P5. (0...9)

ALE
RD

RSTOUT
EPROM

SR_E

DP_E
DP_O

SR_O

P_CS_1
P_CS_0

Coprocessor

SAB 80C166

Coprocessor Unit
ITS04318

*

SAB 82532

Semiconductor Group 58

Main Block Diagram (cont’d)

ESCC2

ITS05574

P2.15
P2.14
P2.1
P2.2
P3.12

ADDR (0...17)
DATA (0...15)
RD
WR
HOLD
HOLDA
INT ESCC2
INT ADMA
BHE
DACK (A,B)
DR (A,B)
P_CS_1
RSTOUT

SAB
82258

ADMA

PC_A (0...19)
PC_D (0...7)
PC_RD
PC_WR
PC_CE
HINTR
DPBSY
RST

ADDR (0...17)
DATA (0...15)

RD
WR

DP_O
DP_E

DPINT
RBUSY

RST

ITD 71321

Dual Port RAM

a)
PC_A(0...19)
PC_D (0...17)

b)
DACK (A,B)

DR (A,B)

ADDR (0...17)

DATA (0...15)

RSTOUT

DPINT

RBUSY

RST

ALE

EPROM

SR_O

SR_E

DP_O

DP_E

P_CS_1

P_CS_0

RD

WR

NMI

P2. (0...15)

P3. (0...15)

P5. (0...9)

SAB 82532

ADDR (0...17)
DATA (0...15)
P2. (0...15)
P3. (0...15)
P5. (0...9)
RSTOUT
ALE
RD

P_CS_0

DACK (A,B)
DR (A,B)

c)

Memory

RAM and EPROM

ADDR (0...17)
DATA (0...15)
RD
WR
EPROM
SR_O
SR_E

*

SAB 82532

Semiconductor Group 59

PC-Bus Interface-Logic

e)

=1

HINTR

DPBSY

H D (0... 7)

H A (0...19)

19
1

2
3
4
5
6
7
8
9

DBUSEN

18
16
14
12
9
7
5
3

GND 74HCT244

1 1G
2G19

U8

1A1
1A2
1A3
1A4
2A1
2A2
2A3
2A4

1Y1
1Y2
1Y3
1Y4
2Y1
2Y2
2Y3
2Y4

PC A16
PC A17
PC A18
PC A19

H A16
H A17
H A18
H A19

2
4
6
8

11
13
15
17

AEN
MEMR>
MEMW>
IOW>

HAEN
HMEMR
HMEMW
NICW

SWRST

RST

AEN

74HCT32

6
5

U3B
4

GND SW DIP-8

SW2

1
2
3
4
5
6
7
8

16
15
14
13
12
11
10
9

ITS04325

PC_A2
PC_A3
PC_A4
PC_A5
PC_A6
PC_A7
PC_A8
PC_A9

4 5 6 7 8 92 3

1 8 x 10k
RP1+5V

Ω

GND

2A4
2A3
2A2

1A4
1A3
1A2

2G
1G

2A1

1A1

2Y4
2Y3
2Y2
2Y1
1Y4
1Y3
1Y2
1Y1

U7

1
19

2

11

15
17

13

6
8

4

74HCT244

18

9

3
5
7

12
14
16

H A12
H A13
H A14
H A15

H A8
H A9
H A10
H A11

PC A12
PC A13
PC A14
PC A15

PC A8
PC A9
PC A10
PC A11

d)

H A6 PC A65
3 PC A7

14
12

7
9

16
18

PC A2
PC A3
PC A4
PC A5

PC A0
PC A1

2A3
2A4
1G

2Y3
2Y4

1A2
1A3
1A4

2A2
2A1

1A1 1Y1
1Y2
1Y3
1Y4
2Y1
2Y2

2G

1
19

GND 74HCT244

U6

15
17

6

11
13

8

2
4

H A7

H A0
H A1
H A2
H A3
H A4
H A5

U5

74HCT245

PC D414

B6
B5

B8
B7

13

11
12

PC D5
PC D6
PC D7

B4
B3
B2
B1

18
17

15
16

PC D0
PC D1
PC D2
PC D3A4

A5
A6
A7
A8

A1
A2
A3

DIR
G

H A4

H A7
H A6
H A5

H A3
H A2
H A1
H A0

c)

b)

a)

PC D1
PC D0

PC D2
PC D3
PC D4
PC D5
PC D6
PC D7

PC D7
PC D6
PC D5
PC D4
PC D3
PC D2
PC D1
PC D0

*

SAB 82532

Semiconductor Group 60

PC-Bus Interface-Logic (cont’d)

a)

b)

c)

HINTR

DPBSY
PC D (0...7)

PC A (0...19)

U1C

U1D

9
10

& 8

74HC08

74HC08

11
13
12

Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8

2
5
6
9
12
15
16
19

3
4
7
8

13
14
17
18
11
1

D1
D2
D3
D4
D5
D6
D7
D8
CLK

CLR

EN 2K
EN 4K
X A13
X A14
X A15
X A16
X A17
X A18

74HCT273

U12

11
1

18

14
17

8
13

4
7

3

D7

CLK
CLR

D8

D3

D5
D6

D4

D1
D2

U13

19
16
15
12
9
6
5
2

Q7
Q8

Q3

Q6
Q5
Q4

Q2
Q1

74HCT273

IRQ3EN
IRQ5EN

&

U14B

6 &

74HCT00

U14C

&

74HCT00

4
5

8 9
10

TRQ3EN
TRQ5EN

PC RD

PC WR

PC CE

RST

ITS05572

74HCT00

&

U14A

2
1 3

10
9

74HCT32

=1

U3C

8
ENDPRAM

PC A19

e)

P0
P1
P2
P3
P4
P5
P6
P7
Q0
Q1
Q2
Q3
Q4
Q5
Q6
Q7
G

P-Q
2
4
6
8

11
13
15
17

3
5
7
9

12
14
16
18
1

U9

74HC688

15 P5

Q5

1
18
16

Q7
G

Q6

14
12
9
7

3
5

17

Q1

Q3
Q4

Q2

P7
Q0

P6

6

11
13

8

2
4

P4

P2
P3

P1
P0

U11

P-Q
19X_A11

X_A12
X_A13
X_A14
X_A15
X_A16
X_A17
X_A18
PC_A11
PC_A12
PC_A13
PC_A14
PC_A15
PC_A16
PC_A17
PC_A18

74HC688

2
3

4
5
6
7

U10A

Y0
Y1

Y3
Y2

G

B
A

PC_A0
PC_A1

1

74HCT139

19

*

SAB 82532

Semiconductor Group 61

Dual Port RAM

Pullup1
Pullup2

1
+ 5 V

a)

b)

c)

2 3 4 5

PC_D(0...7)

RST

PC_A(0...19)

PC_A0

PC_CE

PC_WR

PC_RD

DPBSY

2
3

1

U15A

74MC139

A
B

C Y3

Y1
Y0

Y2 7

4
5
6

EVEN

COD

MINTR 4 3

U4B

74MCT04

PC_D0
PC_D1
PC_D2
PC_D3
PC_D4
PC_D5
PC_D6
PC_D7
PC_A1
PC_A2
PC_A3
PC_A4
PC_A5
PC_A6
PC_A7
PC_A8
PC_A9
PC_A10
PC_A11

PC_A11

PC_D4

PC_A4

PC_A10
PC_A9
PC_A8
PC_A7
PC_A6
PC_A5

PC_A3
PC_A2
PC_A1
PC_D7
PC_D6
PC_D5

PC_D3
PC_D2
PC_D1
PC_D0

ITS04315

*

SAB 82532

Semiconductor Group 62

Dual Port RAM (cont’d)

a)

b)

c)

RST

DATA (0...15)

ADDR (0...17)

DP E

6 7 8 9

U16

1
2
3
4
6

17
18
19
20
21
22
23
24
7
8
9

10
11
12
13
14
15
16

5

CEL
R / WL
BUSYL
INTL
OEL
D0L
D1L
D2L
D3L
D4L
D5L
D6L
D7L
A0L
A1L
A2L
A3L
A4L
A5L
A6L
A7L
A8L
A9L
A10L

CER
R / WR
BUSYR

INTR
OER
D0R
D1R
D2R
D3R
D4R
D5R
D6R
D7R
A0R
A1R
A2R
A3R
A4R
A5R
A6R
A7R
A8R
A9R

A10R

ITD71321

51
50
49
48
46
27
28
29
30
31
32
33
34
45
44
43
42
41
40
39
38
37
36
47

DATA0

ADDR11

DATA4

ADDR4

ADDR10
ADDR9
ADDR8

ADDR6
ADDR7

ADDR5

ADDR3
ADDR2
ADDR1

DATA6
DATA7

DATA5

DATA2
DATA3

DATA1

ADDR1147

DATA1231

ADDR442

ADDR10
ADDR9
ADDR8
ADDR7
ADDR6
ADDR5

36
37
38

40
39

41

ADDR3
ADDR2
ADDR1
DATA15
DATA14
DATA13

43
44
45

33
34

32

DATA11
DATA10
DATA9
DATA8

29
30

28
27

A10R

A6R
A7R
A8R
A9R

A3R
A4R
A5R

D7R
A0R
A1R
A2R

D6R
D5R
D4R

BUSYR

D0R

D3R
D2R
D1R

OER
INTR

R / WR
CER

49

46
48

51
50

5

ITD71321

A10L

21

10

16
15
14
13
12
11

A6L

A9L
A8L
A7L

A5L
A4L
A3L

9
8
7

24
23
22

D7L

A2L
A1L
A0L

D6L
D5L
D4L

BUSYL
R / WL

3

20
19
18
17

6
4

D0L

D3L
D2L
D1L

OEL
INTL

2
1

CEL

U17 DP O

WR

RBUSY

RD

DPINT

ITS05567

8 x 1 kΩ
P2R

*

SAB 82532

Semiconductor Group 63

CPU-Block SAB 80C166

ADDR (0...17)

DATA (0...15)

P3. (0...15)

P2. (0...15)

P5. (0...9)

RBUSY

RST

DPINT

NMI

Pullup2
VCC

GND

a)
b)

c)

U19
10
83
84
85
86
87
88
89
90
93
94
95
96
97
98
99
100
15
16
17
18
19
20
21
22
25
26
27
28
29
30
31
32
1
2
11
65
66
67
68
69
70
71
72
73
74
75
76
77
80
81
82

DATA0
DATA1
DATA2
DATA3
DATA4
DATA5
DATA6
DATA7
DATA8
DATA9
DATA10
DATA11
DATA12
DATA13
DATA14
DATA15
ADDR0
ADDR1
ADDR2
ADDR3
ADDR4
ADDR5
ADDR6
ADDR7
ADDR8
ADDR9
ADDR10
ADDR11
ADDR12
ADDR13
ADDR14
ADDR15
ADDR16
ADDR17
RD
P3.0
P3.1
P3.2
P3.3
P3.4
P3.5
P3.6
P3.7
P3.8
P3.9
P3.10
P3.11
P3.12
P3.13
P3.14
P3.15

ALE
P0.0 / AD0
P0.1 / AD1
P0.2 / AD2
P0.3 / AD3
P0.4 / AD4
P0.5 / AD5
P0.6 / AD6
P0.7 / AD7
P0.8 / AD8
P0.9 / AD9

P0.10 / AD10
P0.11 / AD11
P0.12 / AD12
P0.13 / AD13
P0.14 / AD14
P0.15 / AD15

P1.0 / A0
P1.1 / A1
P1.2 / A2
P1.3 / A3
P1.4 / A4
P1.5 / A5
P1.6 / A6
P1.7 / A7
P1.8 / A8
P1.9 / A9

P1.10 / A10
P1.11 / A11
P1.12 / A12
P1.13 / A13
P1.14 / A14
P1.15 / A15
P4.0 / A16
P4.1 / A17

P3.0 / T0IN
P3.1 / T6OUT
P3.2 / CAPIN

P3.3 / T3OUT
P3.4 / T3EUD

P3.5 / T4IN
P3.6 / T3IN
P3.7 / T2IN
P3.8 / TXD1
P3.9 / RXD1

P3.10 / TXD0
P3.11 / RXD0

P1.12 / BHE
P1.13 / WR

P1.14 / READY
P1.15 / CLKOUT

d)

e)
f)

g)

h)

ADDR0

ADDR (11...17)

P3.12 / BHE

P3.14 / READY

ITS0431780C166

P2.0

12
13
14

9
8

39
40
33
34
35
36
37
38
41
42
43
44
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
6
7

24
45
63
79
91
5
4
3

23
46

RSTIN
RSTOUT
NMI
EBC0
EBC1

P5.0 / AN0
P5.1 / AN1
P5.2 / AN2
P5.3 / AN3
P5.4 / AN4
P5.5 / AN5
P5.6 / AN6
P5.7 / AN7
P5.8 / AN8
P5.9 / AN9
P2.0 / CC0IO
P2.1 / CC1IO
P2.2 / CC2IO
P2.3 / CC3IO
P2.4 / CC4IO
P2.5 / CC5IO
P2.6 / CC6IO
P2.7 / CC7IO
P2.8 / CC8IO
P2.9 / CC9IO
P2.10 / CC10IO
P2.11 / CC11IO
P2.12 / CC12IO
P2.13 / CC13IO
P2.14 / CC14IO
P2.15 / CC15IO

XTAL1
XTAL2

AREFV

AGNDV
P5.0
P5.1
P5.2
P5.3
P5.4
P5.5
P5.6
P5.7
P5.8
P5.9
P2.0
P2.1
P2.2
P2.3
P2.4
P2.5
P2.6
P2.7
P2.8
P2.9

SS

SSV
V

V

SS

SS
V

SS

SS
V
V

VSS

VCC
V

V
V

V
V

CC

CC

CC

CC

CC

64
78
92

CCV

GND

X1

PMI

OSX 40MHz

VCC

VCC

GND

GND

Ι

RD

*

SAB 82532

Semiconductor Group 64

 CPU-Block SAB 80C166 (cont’d)

RSTOUTRSTOUT

ALE

a)

b)

c)

U4C

56READY

d)

e)
f)

g)

h)

ADDR (11...17)

ADDR0

RD

74HCT04

U18

ADDR11

ADDR12

ADDR13

ADDR14

ADDR15

ADDR16

ADDR17

ADDR0

RSTOUT

BHE

RD

1

2

3

4

5

6

7

8

9

10

11

13

14

23

P3.14 READY

P3.12 BHE

Ι 1

Ι 2

Ι 3

Ι 4

Ι 5

Ι 6

Ι 7

Ι 8

Ι 9

Ι 10

Ι 11

Ι 12

Ι 13

Ι 14

O1

O2

O3

O4

O5

O6

O7

O8

22

21

20

19

18

17

16

15 P CS 0

DP_E

DP_O

SR_E

SR O

RSTOUT

EPROM

P CS 1

RD

ITS05569

20L8
Chip Select Decoder

*

SAB 82532

Semiconductor Group 65

RAM and EPROM

ADDR (0...17)

DATA (0...15)
a)

b)

c)

d)

e)

f)

EPROM

RD

SR O

SR E

WR

ADDR1
ADDR2
ADDR3
ADDR4
ADDR5
ADDR6
ADDR7
ADDR8
ADDR9
ADDR10
ADDR11
ADDR12
ADDR13
ADDR14

10
9
8
7
6
5
4
3

25
24
21
23

2
26
20
22
27

1 PCM
OE
CE

A12
A13

A11

A9
A10

A8

A6
A7

A5

A3
A4

A2
A1
A0

VPP

CCV

DATA0
DATA1
DATA2
DATA3
DATA4
DATA5
DATA6
DATA721

20
19
18
17
15
14
13

D0

D7

D5
D6

D4

D1
D2
D3

ADDR2
ADDR3
ADDR4
ADDR5
ADDR6
ADDR7
ADDR8
ADDR9
ADDR10
ADDR11
ADDR12
ADDR13
ADDR14

ADDR1

A9

27
22
20
26

21
23

OE

PP

PCM1
V

A13
A12
A11
A10

CE

2

24
25

10

A3

A63

A8
A7

5
4

6

A5
A4

A09
8
7 A2

A1

D3
D4
D5
D6
D7

21

19
20

18

D0
D1
D2

15
17

14
13

DATA15
DATA14
DATA13
DATA12
DATA11
DATA10
DATA9
DATA8

27128

CCV

U21

U20

27128

ITS04316

*

SAB 82532

Semiconductor Group 66

 RAM and EPROM (cont’d)

ADDR (0...17)

DATA (0...15)
a)

b)

ADDR1

ADDR2

ADDR3

ADDR4

ADDR5

ADDR6

ADDR7

ADDR8

ADDR9

ADDR10

ADDR11

ADDR12

ADDR13

ADDR14

ADDR15

ADDR16

ADDR17

29

24

22

2

31

3

28

4

25

23

26

27

5

6

7

8

9

10

11

12

U22

A16

A15

A14

A13

A12

A11

A10

A9

A8

A7

A6

A5

A4

A3

A2

A1

A0

WE

OE

CE N.C.

N.C.

1

30

21

20

19

18

17

15

14

13

DATA10

DATA15

DATA14

DATA13

DATA12

DATA11

DATA9

DATA8

628128

ADDR17

ADDR16

ADDR15

ADDR14

ADDR13

ADDR12

ADDR11

ADDR10

ADDR9

24

29

22

31

2

3

4

28

25

26

23

27

ADDR8

ADDR7

ADDR6

ADDR5

ADDR4

ADDR3

ADDR2

ADDR1

10

6

5

7

8

9

11

12

WE

A13

A16

OE

CE

A15

A14

A10

A12

A11

A9

A8

A7

A6

A5

A4

A3

A2

U22

A1

A0

DATA7

DATA6

DATA5

DATA4

DATA3

DATA2

DATA1

DATA0

15

21

20

19

18

17

14

13

O7

O6

O5

O4

O3

O2

O1

O0

O7

O4

O6

O5

O3

O2

O1

O0

f)

e)

c)

d)

RD

SR O

SR E

WR

628128

N.C.

N.C.
30

1

ITS05568

*

SAB 82532

Semiconductor Group 67

ESCC2-Serial Port

ADDR (0...17)

DATA (0...15)

P2. (0...15)

P3. (0...15)

RSTOUT

GND

+
1 Fµ
C4

C 2
1 Fµ

C 5

1 Fµ
C3
1 Fµ

+ +

+

GND

LT1081

P3.10

P3.11

11
10
12
9
1
3
4
5
2
6

REC1IN
REC2IN

TR2OUT
TR1OUT

RES
A0
A1
A2
A3
A4
A5
A6
D0
D1

14
7
13
8

GND

U24

a)

b)

X2

C
22pF

7
22pF

6C16 MHz

GNDGND
U25

GND

GND

GND

5
9
4
8
3
7
2
6
1

P1

DB9

RD

P_CS_0

GND

DACK (A,B)

DR (A,B)

P5. (0...9)

ALE

P_CS_1

NMI

VCC

CCV

VCC

d)

c)

e)

f)
ITS04326

ESCC2

8

59
60

5

7
6

3
4

2
28

58
57
56
55
54
53
52
51
50
49
48
47
46
45

9
12
11
10
13
22
29
26
25
24
23

D2
D3
D4
D5
D6
D7
D8
D9
D10
D11
D12
D13
D14
D15
ALE
WR / R / W
RD / DS
BHE / BLE
CS
DTACR
WIDTH
INT
INTA
IE0
IE1

REC1OUT
REC2OUT

TR2IN
TR1IN

C1+
C1
C2+
C2
V+
V

P3.13

P3.12

P2.1

DACKB
DRRB
DRTB

DACKA
DRRA
DRTA

P7
P6
P5
P4
P3
P2
P1
P0

RXCLKB
TXCLKB

CDB
CTSB / CXDB

RTSB
RXDB
TXDB

RXCLKA
TXCLKA

CDA
CTSA / CXDA

RTSA
RXDA
TXDA

XTAL2
XTAL1

38
37
17
14
15
16
42
44
43
18
21
30
19
41
39
40
62
63
64
65
66
67
68
1
34
32
36
33
31
35

*

SAB 82532

Semiconductor Group 68

ESCC2-Serial Port (cont’d)

JUMPER

JUMPER

f)

e)

a)

CCV

9 8 7 6 5 4

TxCLKA

RxCLKB
TxCLKB

CTSB / CxDB

RxCLKA

CDB

RTSB
RxDB
TxDB

JP2

CTSA / CxDA

R-PACK8
RPACK1

23

RTSA

CDA

RxDA
TxDA

1

JP2

5

CONNECTOR DB9

GND

ITS05573

6
2
7
3
8
4
9

CONNECTOR DB9

8

9
5

4

3
7
2
6

BOUT
BOUT
AOUT
AOUT

GND

GND

11

EN
EN
DOUT
COUT

AM26LS32

4
12
13

BOUT
AOUT

U27

AM26LS30

3
5

MODE
BIN
ENB
AIN
ENA

7
4

2
6

3

U26

6
9
10
15
14

DIN
DIN

CIN
CIN

BIN

7
2
1

BIN
AIN
AIN

10
11
15
14

1

P3

1

P2

b)

BHE

HOLD

HOLDA

INT ESCC2

INT ADMA

P3.12

P2.15

P2.14

P2.13

P2.2

d)

c)

U2A

74LS08

& &

U2A
DACK 0

DACK 1
DACK A3

1

2
3 DACK B

DACK 2

DACK 3 2

1

74LS08

*

SAB 82532

Semiconductor Group 69

ADMA

INT ESCC2

INT ADMA

DACK (A,B)

DT (A,B)

ADDR16
ADDR17

A16
A17

U7

Q7
Q6
Q5
Q4
Q3
Q2
Q1
Q0

OC
G

D7

D5
D6

D3
D4

D1
D2

D0

U7

19

9
12
15
16

6
5
2

18

11
1

4
3

7
8
13
14
17

A9
A8

A10
A11
A12
A13
A14
A15

ADDR8
ADDR9

ADDR13
ADDR12

ADDR15
ADDR14

ADDR11
ADDR10

19 Q7 D7
OC

G

12
15
16

Q39

Q5
Q6

Q4

5
6

2

Q1
Q2

Q0 D0

D2
D1

D4
D3

D6
D5

18

11
1

8

14
17

13

7

3
4

74LS373 74LS373

ADDR7
ADDR6
ADDR5
ADDR4
ADDR3
ADDR2
ADDR1
ADDR0

a)

b)

c)
d)

e)

ADDR (0...17)

HOLD

HLDA

BHE
CS1
RD
WR

U7A

3
1
2

=1

74LS32

3 2
1&

U7A

74LS08

HOLD
HLDA

U7

1Y1

1Y3
1Y2

2Y1

2Y3
2Y2

1Y4

2Y43

12

5
7
9

18

14
16

17

19

74LS244

2G
1G

2A4
1

11

15
13

8
1A4

2A2
2A3

2A1

1A2
1A3

1A1

6
4
2

U7

82C288

8

12

4
5

11

16
13

17

9

f)
DAT (0...15)

7
15

3

6
14

18

2
19

1

ALE
MRDC

MCE
IOWC
IORC
INTA
DEN
DT / R

CMDLT
CEN / AEN

CEHL
MB

M / IO
S1
S0

CLK
READY

MWTC

ITS04323

RSTOUT

*

SAB 82532

Semiconductor Group 70

 ADMA (cont’d)

ADDR0
ADDR1
ADDR2
ADDR3
ADDR4
ADDR5
ADDR6
ADDR7

2
5
6
9

12
15
16
19

Q7
Q6
Q5
Q4
Q3
Q2
Q1
Q0

U7

18
17
14
13
8
7
4
3

A7
A6
A5
A4
A3
A2
A1
A0

11
1

74LS373

A73

18
16
14
12
9
7
5

A3

A6
A5
A4

A2
A1
A0

D0
D1
D2
D3
D4
D5
D6
D7
OC

G

19

13

1
17
15

11
8
6
4
2

1A1
1A2
1A3
1A4
2A1
2A2
2A3
2A4
1G
2G

1Y1
1Y2
1Y3
1Y4
2Y1
2Y2
2Y3
2Y4

V CC

R 7
1 kΩ U7

U7

59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
42
41
40
39
38
37
36
35
16
17

1
14
11
13

8
2
3

10
12
15

A23
A22
A21
A20
A19
A18
A17
A16
A15
A14
A13
A12
A11
A10
A9
A8
A7
A6
A5
A4
A3
A2
A1
A0
HOLD
HLDA
BHE
M / IO
S1
S2

CS
RD
WR
READY
CLK
RESET

ADMA286

A17
A16
A15
A14
A13
A12
A11
A10
A9
A8
A7
A6
A5
A4
A3
A2
A1
A0

4
64
68
5
63
67
6
62
66
7
61
65
18
20
22
24
27
29
31
33
19
21
23
25
28
30
32
34

DREQ3
DACK3

EOD3

D15
D14
D13
D12
D11
D10

D9
D8
D7
D6
D5
D4
D3
D2
D1
D0

EOD2
DACK2
DREQ2

EOD1
DACK1
DREQ1

EOD0
DACK0
DREQ0

1

2
U7A
74LS04

74LS244
U7A

12

1 2

74LS04

74LS04

GND

U7A

V CC

R 7 7R 7R

PHI
8

X2
GND

GND

OSZI 20 MHz

ITS05571f)

e)

d)
c)

b)

a)

*

SAB 82532

Semiconductor Group 71

8.2 Appendix B

PAL-Description File

TITLE DECODER_PAL1

; This decoder-PAL generates the appropriate chip select signals for EPROM, static RAM,
; Dual port RAM and peripherals on the SAB 80C166 evalution board.

CHIP MEM_DEC1 PALCE20V8

STRING EPROM_ADDR_SELECT ‘(A17 x A16 x A15)’
;00000H – 07FFFH

STRING DPRAM_ADDR_SELECT ‘(A17 x A16 x A15 x A14 x A13 x A12)’
;0E000H – 0EFFFH

STRING PERI_ADDR0_SELECT ‘(A17 x A16 x A15 x A14 x A13 x A12 x A11 x A10)’
;0F000H – 0F3FFH

STRING PERI_ADDR1_SELECT ‘(A17 x A16 x A15 x A14 x A13 x A12 x A11 x A10)’
;0F400H – 0F7FFH

EQUATIONS

EPROM_CS = EPROM_ADDR_SELECT x RD x RSTOUT
PERI-CS_0 = PERI_ADDR0_SELECT
PERI-CS_1 = PERI_ADDR1_SELECT
DPRAM_CS_ODD = DPRAM_ADDR_SELECT x BHE
DPRAM_CS_EVEN = DPRAM_ADDR_SELECT x A0
SRAM_CS_ODD = (EPROM_ADDR_SELECT x (RSTOUT+RSTOUT x RD))

 x PERI_ADDR0_SELECT
 x PERI_ADDR1_SELECT
 x DPRAM_ADDR_SELECT
 x BHE

SRAM_CS_EVEN = (EPROM_ADDR_SELECT x (RSTOUT+RSTOUT x RD))
 x PERI_ADDR0_SELECT
 x PERI_ADDR1_SELECT
 x DPRAM_ADDR_SELECT
 x A0

8.3 Appendix C

Source Code

Because of its volume, the source code is not attached to this description. On request, we’ll send
you the complete listing on floppy disk.

*

	1 General Information
	2 Introduction
	3 Hardware of the High Speed HDLC Frame Relay
	3.1 ESCC2 with SAB 80C166
	3.2 ADMA with SAB 80C166
	3.3 ESCC2 with ADMA

	4 Device Driver Modules
	4.1 Overview
	4.2 ESCC2-Device Driver Module Entries
	4.2.1 Message Entry Point
	4.2.2 Interrupt Entry Point

	4.3 Receiver and Transmitter
	4.3.1 Receiver
	4.3.2 Transmitter

	4.4 Data Structure of the ESCC2-Device Driver Modu...
	4.5 ADMA-Device Driver Module
	4.6 Software Workaround for Single-Cycle Mode

	5 The Application Module HSHFR
	5.1 Structure of the Application Module
	5.2 Detailed Description of the Application Module...

	6 Performance of the System
	6.1 Time for Data Handling
	6.2 Bit Rate and Frame Rate
	6.3 Time for Application
	6.4 Performance Improvements

	7 Device Driver System
	7.1 Overview
	7.2 General Module Architecture
	7.3 Integration of Modules
	7.4 The Example HSHFR
	7.5 Application Program Interface

	8 Appendix
	8.1 Appendix A
	8.2 Appendix B
	8.3 Appendix C

