

 Introduction to the OsmocomDECT stack

 OsmoDevCon2013
 4th-8th April 2013
 Berlin, Germany

 Patrick McHardy <kaber@trash.net>

 http://dect.osmocom.org

 Overview

 DECT stack implementing physical layer, MAC layer, Data Link
control layer, Network layer and Interworking unit

 Supports FP (base station) and PP (portable part) modes

 Physical Layer implemented through driver for sc1442x baseband
chipsets, including open source firmware and generic transceiver layer

 MAC layers (cell site, cluster control), Data Link control contained in
kernel

 Network layer implemented as userspace library

 Physical layer

 Drivers: drivers/dect

 Drivers interact with baseband processor and radio
 Radio programming

 Baseband programming (runtime firmware patching)

 Frame reception and transmission

 Time keeping

 Ciphering offloading

 Received frames for 1-6 timeslots and current time are encapsulated in
"dect_transceiver_event" structure and queued to generic transceiver

layer

 sc1442x driver: drivers/dect/coa

 Implements support for sc14421/24 basebands
 sc14421: ComOnAir PCMCIA cards

 sc14424: ComOnAir PCI cards

 Features:
 Cipher offloading

 Checksum offloading

 Wideband audio

 Open source firmware assembled during kernel build

 "radio_ops" for different radio types

 sc1442x driver: drivers/dect/coa

 Baseband processor:
 Executes one instruction per DECT symbol

 Call stack of depth 3

 Synchonization instructions: WT, WNT, EN_SL_ADJ

 Transmission and reception: B_SR/B_ST, B_AR/B_AT, B_BR/B_BT,
B_BRFU/B_BTFU, ...

 Ciphering: D_LDK/D_PREP, D_LDS/D_WRS

 Control PINs: P_LD, P_LDL, P_LDH

 Microwire transmission (radio settings): MEN1N, MEN1, M_WR

 sc1442x driver: drivers/dect/coa

 Radios:
 U2785 ATMEL RF IC:
 PCI and Type II PCMCIA cards

 "Slow-hopping" radio: needs one timeslot for channel switching

 Dynamic mapping of DECT bands to divisor/swallow count settings

 LMX3161 NSC Single Chip Radio Transceiver:
 Type III PCMCIA cards

 Not supported yet, work is ongoing

 Physical layer

 Transceiver layer: net/dect/transceiver.c

 Handling of "transceiver groups": multiple synchronized transceivers
 Synchronization of secondary transceivers

 Dequeues events from all transceivers in a group

 Events are sorted chronologically

 Virtual clock maintenance

 Queueing of reordered events to MAC cell site layer

 Clock replay to MAC cell site layer

 Physical layer

 Transceiver layer: net/dect/transceiver.c

 Netlink userspace API:
 Notification about new/removed transceivers

 Transceiver configuration

 Attachment/detachment to/from cells

 Band configuration

 Status information

 Statistics

 Physical layer

 Transceiver layer: net/dect/transceiver.c

 # dect-transceiver-list --name trx9

 DECT Transceiver trx9@cell0:

 Type: sc1442x

 RF-band: 00000

 Events: busy: 0 late: 2587

 slot 0: <tx> carrier: 2 (1893.888 MHz)

 RX: bytes 320 packets 40 a-crc-errors 1 x-crc-errors 0 z-crc-errors 0

 TX: bytes 1776 packets 37

 slot 2: <idle> carrier: 0 (1897.344 MHz)

 RX: bytes 0 packets 0 a-crc-errors 0 x-crc-errors 0 z-crc-errors 0

 TX: bytes 0 packets 0

 [...]

 slot 10: <rx,sync> carrier: 9 (1881.792 MHz +0.569 kHz) signal level: -41.94dBm

 RX: bytes 2600 packets 325 a-crc-errors 0 x-crc-errors 0 z-crc-errors 0

 TX: bytes 0 packets 0

 slot 12: <rx> carrier: 2 (1893.888 MHz +0.083 kHz) signal level: -57.47dBm

 RX: bytes 1764 packets 36 a-crc-errors 0 x-crc-errors 0 z-crc-errors 0

 TX: bytes 0 packets 0

 slot 14: <idle> carrier: 0 (1897.344 MHz)

 RX: bytes 0 packets 0 a-crc-errors 0 x-crc-errors 0 z-crc-errors 0

 TX: bytes 0 packets 0

 [...]

 slot 22: <idle> carrier: 0 (1897.344 MHz)

 RX: bytes 0 packets 0 a-crc-errors 0 x-crc-errors 0 z-crc-errors 0

 MAC layer

 MAC layer overview

 MAC layer
 CSF (Cell site Functions)

 CCF (Cluster Control functions)

 Communication between layers either through handles

 Either direct function calls or network protocol

 Network protocol unfinished

 Transparent

 MAC layer

 MAC cell site functions (CSF): net/dect/mac_csf.c

 Maintenance tasks:
 Transceiver group maintenance (bind/unbind)

 Frame timer synchronization and maintenance

 Channel list maintenance (periodic scanning and quality control)

 Channel selection based on channel lists

 Transceiver selection

 Bearer enablement timing

 Bearer quality control

 MAC layer

 MAC cell site functions (CSF): net/dect/mac_csf.c

 Idle receiver control (IRC):
 Locking to FPs (PP-side only)

 Secondary transceiver synchronization

 Periodic channel scanning

 Channel hopping (receiver channel scanning sequence)

 Reception of MAC connection requests (usually FP-side only)

 MAC layer

 MAC cell site functions (CSF): net/dect/mac_csf.c

 Dummy bearer control (DBC):
 FP-side only

 Broadcast bearer

 Cell identity

 Timing information

 Cell capabilities

 Paging

 MAC layer

 MAC cell site functions (CSF): net/dect/mac_csf.c

 Traffic bearer control (TBC):
 Bi-directional traffic bearer setup and management

 Muxing/Demuxing of higher layer data and MAC layer information

 Monitor Bearer control (DMB):
 Used for sniffing

 Follows FP channel hopping sequence

 Locks to new MAC connections

 Passes frames up to AF_DECT raw sockets

 MAC layer

 MAC cell site functions (CSF): net/dect/mac_csf.c

 Netlink userspace API:
 Cell site configuration

 Binding of cells to clusters

 Reporting of scan results

 Status information

 MAC layer

 MAC cluster control functions (CCF): net/dect/mac_csf.c

 Maintenance tasks:
 Cluster MAC layer frame timers

 Cell site MAC layer configuration

 Broadcast message control (BMC):
 Dispatch of paging messages to cell site functions (FP-side only)

 Reception of paging messages from cell site functions (PP-side only)

 MAC layer

 MAC cluster control functions (CCF): net/dect/mac_csf.c

 Multi-Bearer control (MBC):
 Maintains multiple cell-site traffic bearers to form a multi bearer

 Cipher management of traffic bearers

 Hand-over

 Higher layer data distribution to traffic bearers

 Reception of higher layer data from cell site function

 Removal of redundant data

 MAC layer

 MAC cluster control functions (CCF): net/dect/mac_csf.c

 Netlink userspace API
 Cluster configuration:
 Identities

 Mode,

 Access rights information

 MBC status information
 Identity

 Service type

 MAC bearers

 Cell site information

 Byte/packet counters

 Handover attempts

 Time slots

 DLC layer

 Data Link Control (DLC): net/dect/dlc.c

 Routing
 Routing of C-Plane and U-Plane data to MAC connections

 Logical MAC connection maintenance
 Multi Bearer setup

 Multi Bearer handover

 Passing of C-Plane and U-Plane data between higher and lower layers

 Connection modification according to higher layer demands

 DLC layer

 Data Link Control C-Plane (DLC): net/dect/dlc_cplane.c

 Paging
 Passing of paging message to higher layer SAP

 Lc entity
 C-Plane data fragmentation and reassembly

 Checksumming

 Instantiating of LAPC entities on connection requests

 DLC layer

 Data Link Control C-Plane (DLC): net/dect/dlc_cplane.c

 LAPC
 Similar to LAPD, LAPDm, ...

 Unacknowledged point-to-point/broadcast communication

 Point-to-point class A communication (window size = 1)

 Point-to-point class B communication (window size = 8), suspend/resume

 Segmentation of messages

 DLC layer

 Data Link control C-Plane SAP: net/dect/dlc_s_sap.c, net/dect/dlc_b_sap:

 S-SAP socket API:
 Socket interface to LAPC

 send/recv/...

 Ciphering API (get/setsockopt)

 MAC connection attributes API (get/setsockopt)

 B-SAP socket API:
 Socket interface to paging

 send/recv/...

 Duplicating received pages to all listeners

 Page attributes specified through CMSG

 DLC layer

 Data Link control U-Place: net/dect/dlc_uplane.c, dlc_lu1_sap.c:

 Generic U-Plane:
 Framing (FBx entities)

 Frame formats (LUx entities)

 LU1 SAP:
 TRansparent UnProtected Service (TRUP)

 Socket interface for Audio

 Audio: min_delay service

 Seamless Handover: frame offset advances depending on time slot

 NWK layer

 Network layer: libdect

 libdect overview:
 LCE (Link Control Entity), roughly comparable to GSM48 RR

 MM (Mobility Management)

 CC (Call Control)

 SS (Supplementary services)

 CLMS (Connectionless messaging service)

 LLME (Lower layer management entity)

 Link and transaction management

 Message/TLV encoding/decoding

 Message routing

 NWK layer

 Network layer: libdect

 libdect Overview:
 User registers one or more ops structures: lce_ops, mm_ops, cc_ops, ...

 Callbacks for indication and confirmation primitives

 Functions for request and result primitives

 Encapsulated parameter structures, reference counted parameters and IEs

 Support functions for authentication, SS, debugging, ...

 NWK layer

 Network layer: libdect

 /** MM_ACCESS_RIGHTS primitive parameters. */

 struct dect_mm_access_rights_param {

 struct dect_ie_collection common;

 struct dect_ie_portable_identity *portable_identity;

 struct dect_ie_list fixed_identity;

 struct dect_ie_location_area *location_area;

 struct dect_ie_auth_type *auth_type;

 struct dect_ie_cipher_info *cipher_info;

 struct dect_ie_zap_field *zap_field;

 struct dect_ie_setup_capability *setup_capability;

 struct dect_ie_terminal_capability *terminal_capability;

 struct dect_ie_service_class *service_class;

 struct dect_ie_model_identifier *model_identifier;

 struct dect_ie_reject_reason *reject_reason;

 struct dect_ie_duration *duration;

 struct dect_ie_iwu_to_iwu *iwu_to_iwu;

 struct dect_ie_escape_to_proprietary *escape_to_proprietary;

 struct dect_ie_codec_list *codec_list;

 };

 NWK layer

 Network layer: libdect

 struct dect_mm_ops {

 size_t priv_size;

 /**< Size of the private storage area of an MM endpoint */

 void (*mm_access_rights_ind)(struct dect_handle *dh,

 struct dect_mm_endpoint *mme,

 struct dect_mm_access_rights_param *param);

 /**< MM_ACCESS_RIGHTS-ind primitive */

 void (*mm_access_rights_cfm)(struct dect_handle *dh,

 struct dect_mm_endpoint *mme, bool accept,

 struct dect_mm_access_rights_param *param);

 /**< MM_ACCESS_RIGHTS-cfm primitive */

 ...

 };

 extern int dect_mm_access_rights_req(struct dect_handle *dh, struct dect_mm_endpoint *mme,

 const struct dect_mm_access_rights_param *param);

 extern void dect_mm_access_rights_res(struct dect_handle *dh, struct dect_mm_endpoint *mme,

 bool accept, const struct dect_mm_access_rights_param *param);

 NWK layer

 Network layer: libdect

 static DECT_SFMT_MSG_DESC(mm_access_rights_request,

 DECT_SFMT_IE(DECT_IE_PORTABLE_IDENTITY, IE_NONE, IE_MANDATORY, 0),

 DECT_SFMT_IE(DECT_IE_AUTH_TYPE, IE_NONE, IE_OPTIONAL, 0),

 DECT_SFMT_IE(DECT_IE_CIPHER_INFO, IE_NONE, IE_OPTIONAL, 0),

 DECT_SFMT_IE(DECT_IE_SETUP_CAPABILITY, IE_NONE, IE_OPTIONAL, 0),

 DECT_SFMT_IE(DECT_IE_TERMINAL_CAPABILITY, IE_NONE, IE_OPTIONAL, 0),

 DECT_SFMT_IE(DECT_IE_IWU_TO_IWU, IE_NONE, IE_OPTIONAL, 0),

 DECT_SFMT_IE(DECT_IE_MODEL_IDENTIFIER, IE_NONE, IE_OPTIONAL, 0),

 DECT_SFMT_IE(DECT_IE_ESCAPE_TO_PROPRIETARY, IE_NONE, IE_OPTIONAL, 0),

 DECT_SFMT_IE(DECT_IE_CODEC_LIST, IE_NONE, IE_OPTIONAL, 0),

 DECT_SFMT_IE_END_MSG

);

 NWK layer

 Network layer: libdect

 NWK: 05 42 0b 02 01 88 0c 08 1b 42 27 01 4c 5c 44 84 |.B.......B’.L\D.|

 NWK: 0e 08 9e 01 7e 0c 42 ae ec ff |....~.B...|

 {MM-KEY-ALLOCATE} message:

 IE: <<ALLOCATION-TYPE>> id: b len: 4 dst: 0xfcf440

 authentication algorithm: DSAA (1)

 authentication key number: 8

 authentication code number: 8

 IE: <<RAND>> id: c len: 10 dst: 0xfcf460

 value: 84445c4c0127421b

 IE: <<RS>> id: e len: 10 dst: 0xfcf480

 value: ffecae420c7e019e

 NWK: 85 40 0a 03 01 48 00 0c 08 de a7 66 4d 34 fb c2 |.@...H.....fM4..|

 NWK: 7f 0d 04 85 6a 5f 9e |....j_.|

 {MM-AUTHENTICATION-REQUEST} message:

 IE: <<AUTH-TYPE>> id: a len: 5 dst: 0xfcf5e0

 authentication algorithm: DSAA (1)

 authentication key type: Authentication code (4)

 authentication key number: 8

 cipher key number: 0

 INC: 0 DEF: 0 TXC: 0 UPC: 0

 IE: <<RAND>> id: c len: 10 dst: 0xfcf600

 value: 7fc2fb344d66a7de

 IE: <<RES>> id: d len: 6 dst: 0xfcf620

 NWK layer

 Network layer Link Control Entity: src/lce.c

 Link maintenance
 Paging

 Direct (PP initiated) and indirect (paged) link setup

 Link attribute modification

 Cipher management in coordination with MM

 NWK layer

 Mobility Management: src/mm.c

 Access rights procedures
 Pairing

 Capability exchange

 Usually coupled with UAK key allocation

 Access rights revocation

 Key allocation procedure
 Allocates UAK

 Derived from AC (Authentication Code)

 NWK layer

 Mobility Management: src/mm.c

 Authentication procedure
 Optional mutual authentication, usually PP only or even none

 Seperate procedure or integrated into key allocation

 UAK or UPI (User personal Identity)

 Session key derivation

 Ciphering procedure
 Ciphering with either SDK or DCK

 Always initiated by PP, FP may suggest ciphering to PP

 NWK layer

 Mobility Management: src/mm.c

 Location procedures
 Informes FP of PP location (cell, cluster)

 Periodic or after location area change

 Capability exchange

 TPUI allocation

 Detach

 Other
 Identity procedurs

 External protocol information procedures

 NWK layer

 Call Control; src/cc.c

 Call procedures
 Call setup, modification, termination, ..

 Codec negotiation

 Call related supplementary services (CRSS)

 U-Plane setup and maintenance

 NWK layer

 Connectionless messaging service: src/clms.c

 Connectionless packet service

 IWU

 Interworking Unit: asterisk, channels/chan_dect.c

 Asterisk Channel driver
 Interacts with libdect

 Supports access rights, key allocation, authentication, chiphering, ...

 Asterisk DB used for storing subscription data

 Narrow-band audio, wide-band unfinished

 Support tools

 libnl-dect:
 Netlink API for configuration and notifications

 Example tools used for configuration

 dectmon:
 DECT protocol decoder using raw sockets

 Multiple transceiver support

 Protocol decoding

 Decryption, life audio

 Interactive command line interface

 Can interact with monitored FPs

 Support tools

 libpcap
 libpcap with DECT raw socket support

 ASL
 ASL macro assembler

 Used for firmware assembly

 Patched version with support for modern chipsets (SC1445x/8x)

 Disassembler
 Firmware disassembler

 Unreleased so far

 Future work

 Finishing wideband support

 CoA Type III support

 GAP/DECT-NG profile compliance

 S1445x SoC support

 DVB-T SDR RX support

